Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017152887> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2017152887 abstract "A new learning methodology based on a hybrid algorithm for interval type-2 fuzzy logic systems (FLS) parameter estimation is presented. The new proposal consists of recursive least-squares (RLS) with back-propagation (BP) and square-root filter (REFIL) with BP combinations. A system with the proposed methodology was simulated to test its capability for output surface temperature prediction of a transfer bar at a hot strip mill (HSM) scale breaker (SB) entry zone for three different types of coils. The inputs of the system are the surface temperature of the transfer bar and the traveling time required to reach the SB entry zone. The inputs are modelled as interval singleton, type-1, or type-2 fuzzy sets depending on whether the noise was taken into account or not. The following combinations were simulated: (a) interval singleton type-2 FLS (type-2 SFLS), (b) interval type-1 non-singleton type-2 FLS (type-2 NSFLS-1) and (c) interval type-2 non-singleton type-2 FLS (type-2 NSFLS-2), where the bold face terms indicate the kind of input. Modelling results show the feasibility of the proposed methodology to be implemented into an intelligent process controller for the HSM industry." @default.
- W2017152887 created "2016-06-24" @default.
- W2017152887 creator A5021606643 @default.
- W2017152887 creator A5087953833 @default.
- W2017152887 date "2006-01-01" @default.
- W2017152887 modified "2023-09-26" @default.
- W2017152887 title "HYBRID LEARNING ALGORITHM FOR INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS" @default.
- W2017152887 cites W149807329 @default.
- W2017152887 cites W1587336697 @default.
- W2017152887 cites W1824237966 @default.
- W2017152887 cites W2132885717 @default.
- W2017152887 cites W2133321814 @default.
- W2017152887 cites W2162706466 @default.
- W2017152887 cites W2186737619 @default.
- W2017152887 doi "https://doi.org/10.2316/journal.201.2006.3.201-1552" @default.
- W2017152887 hasPublicationYear "2006" @default.
- W2017152887 type Work @default.
- W2017152887 sameAs 2017152887 @default.
- W2017152887 citedByCount "3" @default.
- W2017152887 crossrefType "journal-article" @default.
- W2017152887 hasAuthorship W2017152887A5021606643 @default.
- W2017152887 hasAuthorship W2017152887A5087953833 @default.
- W2017152887 hasConcept C11413529 @default.
- W2017152887 hasConcept C114614502 @default.
- W2017152887 hasConcept C154945302 @default.
- W2017152887 hasConcept C2778067643 @default.
- W2017152887 hasConcept C33923547 @default.
- W2017152887 hasConcept C41008148 @default.
- W2017152887 hasConcept C58166 @default.
- W2017152887 hasConceptScore W2017152887C11413529 @default.
- W2017152887 hasConceptScore W2017152887C114614502 @default.
- W2017152887 hasConceptScore W2017152887C154945302 @default.
- W2017152887 hasConceptScore W2017152887C2778067643 @default.
- W2017152887 hasConceptScore W2017152887C33923547 @default.
- W2017152887 hasConceptScore W2017152887C41008148 @default.
- W2017152887 hasConceptScore W2017152887C58166 @default.
- W2017152887 hasIssue "3" @default.
- W2017152887 hasLocation W20171528871 @default.
- W2017152887 hasOpenAccess W2017152887 @default.
- W2017152887 hasPrimaryLocation W20171528871 @default.
- W2017152887 hasRelatedWork W1984138193 @default.
- W2017152887 hasRelatedWork W2015274193 @default.
- W2017152887 hasRelatedWork W2045297403 @default.
- W2017152887 hasRelatedWork W2159964792 @default.
- W2017152887 hasRelatedWork W2351491280 @default.
- W2017152887 hasRelatedWork W2620942864 @default.
- W2017152887 hasRelatedWork W303980170 @default.
- W2017152887 hasRelatedWork W3107474891 @default.
- W2017152887 hasRelatedWork W633568590 @default.
- W2017152887 hasRelatedWork W861025093 @default.
- W2017152887 hasVolume "34" @default.
- W2017152887 isParatext "false" @default.
- W2017152887 isRetracted "false" @default.
- W2017152887 magId "2017152887" @default.
- W2017152887 workType "article" @default.