Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017195802> ?p ?o ?g. }
- W2017195802 abstract "Abstract Background The construction of genetic linkage maps for cultivated peanut ( Arachis hypogaea L.) has and continues to be an important research goal to facilitate quantitative trait locus (QTL) analysis and gene tagging for use in a marker-assisted selection in breeding. Even though a few maps have been developed, they were constructed using diploid or interspecific tetraploid populations. The most recently published intra-specific map was constructed from the cross of cultivated peanuts, in which only 135 simple sequence repeat (SSR) markers were sparsely populated in 22 linkage groups. The more detailed linkage map with sufficient markers is necessary to be feasible for QTL identification and marker-assisted selection. The objective of this study was to construct a genetic linkage map of cultivated peanut using simple sequence repeat (SSR) markers derived primarily from peanut genomic sequences, expressed sequence tags (ESTs), and by data mining sequences released in GenBank. Results Three recombinant inbred lines (RILs) populations were constructed from three crosses with one common female parental line Yueyou 13, a high yielding Spanish market type. The four parents were screened with 1044 primer pairs designed to amplify SSRs and 901 primer pairs produced clear PCR products. Of the 901 primer pairs, 146, 124 and 64 primer pairs (markers) were polymorphic in these populations, respectively, and used in genotyping these RIL populations. Individual linkage maps were constructed from each of the three populations and a composite map based on 93 common loci were created using JoinMap. The composite linkage maps consist of 22 composite linkage groups (LG) with 175 SSR markers (including 47 SSRs on the published AA genome maps), representing the 20 chromosomes of A. hypogaea . The total composite map length is 885.4 cM, with an average marker density of 5.8 cM. Segregation distortion in the 3 populations was 23.0%, 13.5% and 7.8% of the markers, respectively. These distorted loci tended to cluster on LG1, LG3, LG4 and LG5. There were only 15 EST-SSR markers mapped due to low polymorphism. By comparison, there were potential synteny, collinear order of some markers and conservation of collinear linkage groups among the maps and with the AA genome but not fully conservative. Conclusion A composite linkage map was constructed from three individual mapping populations with 175 SSR markers in 22 composite linkage groups. This composite genetic linkage map is among the first true tetraploid peanut maps produced. This map also consists of 47 SSRs that have been used in the published AA genome maps, and could be used in comparative mapping studies. The primers described in this study are PCR-based markers, which are easy to share for genetic mapping in peanuts. All 1044 primer pairs are provided as additional files and the three RIL populations will be made available to public upon request for quantitative trait loci (QTL) analysis and linkage map improvement." @default.
- W2017195802 created "2016-06-24" @default.
- W2017195802 creator A5022128397 @default.
- W2017195802 creator A5029823651 @default.
- W2017195802 creator A5048424631 @default.
- W2017195802 creator A5054436815 @default.
- W2017195802 creator A5056445856 @default.
- W2017195802 creator A5073458307 @default.
- W2017195802 creator A5078001022 @default.
- W2017195802 creator A5078059635 @default.
- W2017195802 creator A5085865763 @default.
- W2017195802 date "2010-01-27" @default.
- W2017195802 modified "2023-10-11" @default.
- W2017195802 title "A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome" @default.
- W2017195802 cites W1490338295 @default.
- W2017195802 cites W176837455 @default.
- W2017195802 cites W1957865117 @default.
- W2017195802 cites W1967737223 @default.
- W2017195802 cites W1973121405 @default.
- W2017195802 cites W1977226953 @default.
- W2017195802 cites W1977812526 @default.
- W2017195802 cites W1977979060 @default.
- W2017195802 cites W1980329169 @default.
- W2017195802 cites W1989880486 @default.
- W2017195802 cites W1993365674 @default.
- W2017195802 cites W1996563927 @default.
- W2017195802 cites W1998257279 @default.
- W2017195802 cites W2001466592 @default.
- W2017195802 cites W2007495341 @default.
- W2017195802 cites W2009445219 @default.
- W2017195802 cites W2014014272 @default.
- W2017195802 cites W2019482594 @default.
- W2017195802 cites W2019790791 @default.
- W2017195802 cites W2022565401 @default.
- W2017195802 cites W2027013376 @default.
- W2017195802 cites W2030300524 @default.
- W2017195802 cites W2031354115 @default.
- W2017195802 cites W2038574100 @default.
- W2017195802 cites W2043386592 @default.
- W2017195802 cites W2046289178 @default.
- W2017195802 cites W2047315074 @default.
- W2017195802 cites W2054015427 @default.
- W2017195802 cites W2054665343 @default.
- W2017195802 cites W208038224 @default.
- W2017195802 cites W2084577341 @default.
- W2017195802 cites W2088510619 @default.
- W2017195802 cites W2090470510 @default.
- W2017195802 cites W2093344660 @default.
- W2017195802 cites W2100591927 @default.
- W2017195802 cites W2106742174 @default.
- W2017195802 cites W2125588390 @default.
- W2017195802 cites W2129493362 @default.
- W2017195802 cites W2141950941 @default.
- W2017195802 cites W2153432139 @default.
- W2017195802 cites W2166154098 @default.
- W2017195802 cites W2166680509 @default.
- W2017195802 cites W2169449045 @default.
- W2017195802 cites W2169869510 @default.
- W2017195802 cites W4231986617 @default.
- W2017195802 doi "https://doi.org/10.1186/1471-2229-10-17" @default.
- W2017195802 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2835713" @default.
- W2017195802 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20105299" @default.
- W2017195802 hasPublicationYear "2010" @default.
- W2017195802 type Work @default.
- W2017195802 sameAs 2017195802 @default.
- W2017195802 citedByCount "122" @default.
- W2017195802 countsByYear W20171958022012 @default.
- W2017195802 countsByYear W20171958022013 @default.
- W2017195802 countsByYear W20171958022014 @default.
- W2017195802 countsByYear W20171958022015 @default.
- W2017195802 countsByYear W20171958022016 @default.
- W2017195802 countsByYear W20171958022017 @default.
- W2017195802 countsByYear W20171958022018 @default.
- W2017195802 countsByYear W20171958022019 @default.
- W2017195802 countsByYear W20171958022020 @default.
- W2017195802 countsByYear W20171958022021 @default.
- W2017195802 countsByYear W20171958022022 @default.
- W2017195802 countsByYear W20171958022023 @default.
- W2017195802 crossrefType "journal-article" @default.
- W2017195802 hasAuthorship W2017195802A5022128397 @default.
- W2017195802 hasAuthorship W2017195802A5029823651 @default.
- W2017195802 hasAuthorship W2017195802A5048424631 @default.
- W2017195802 hasAuthorship W2017195802A5054436815 @default.
- W2017195802 hasAuthorship W2017195802A5056445856 @default.
- W2017195802 hasAuthorship W2017195802A5073458307 @default.
- W2017195802 hasAuthorship W2017195802A5078001022 @default.
- W2017195802 hasAuthorship W2017195802A5078059635 @default.
- W2017195802 hasAuthorship W2017195802A5085865763 @default.
- W2017195802 hasBestOaLocation W20171958021 @default.
- W2017195802 hasConcept C104317684 @default.
- W2017195802 hasConcept C122735190 @default.
- W2017195802 hasConcept C141231307 @default.
- W2017195802 hasConcept C142870003 @default.
- W2017195802 hasConcept C149034497 @default.
- W2017195802 hasConcept C180754005 @default.
- W2017195802 hasConcept C190789776 @default.
- W2017195802 hasConcept C2776156084 @default.
- W2017195802 hasConcept C2993850768 @default.
- W2017195802 hasConcept C30481170 @default.
- W2017195802 hasConcept C31266012 @default.