Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017202354> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2017202354 abstract "Very high resolution (VHR) images are large datasets for pixel annotation--a process that has depended on the supervised training of an effective pixel classifier. Active learning techniques have mitigated this problem, but pixel descriptors are limited to local image information and the large number of pixels makes the response time to the user's actions impractical, during active learning. To circumvent the problem, we present an active learning strategy that relies on superpixel descriptors and a priori dataset reduction. Firstly, we compare VHR image annotation using superpixel- and pixel-based classifiers, as designed by the same state-of-the-art active learning technique--Multi-Class Level Uncertainty (MCLU). Even with the dataset reduction provided by the superpixel representation, MCLU remains unfeasible for user interaction. Therefore, we propose a technique to considerably reduce the superpixel dataset for active learning. Moreover, we subdivide the reduced dataset into a list of subsets with random sample rearrangement to gain both speed and sample diversity during the active learning process." @default.
- W2017202354 created "2016-06-24" @default.
- W2017202354 creator A5014049890 @default.
- W2017202354 creator A5015267493 @default.
- W2017202354 creator A5038999508 @default.
- W2017202354 creator A5072908989 @default.
- W2017202354 creator A5080024357 @default.
- W2017202354 date "2014-08-01" @default.
- W2017202354 modified "2023-10-01" @default.
- W2017202354 title "Superpixel-Based Interactive Classification of Very High Resolution Images" @default.
- W2017202354 cites W1514940655 @default.
- W2017202354 cites W1548953334 @default.
- W2017202354 cites W1845402413 @default.
- W2017202354 cites W1964335437 @default.
- W2017202354 cites W1996379121 @default.
- W2017202354 cites W1999478155 @default.
- W2017202354 cites W2012110233 @default.
- W2017202354 cites W2033762143 @default.
- W2017202354 cites W2039051707 @default.
- W2017202354 cites W2039388884 @default.
- W2017202354 cites W2045161375 @default.
- W2017202354 cites W2073683004 @default.
- W2017202354 cites W2098758111 @default.
- W2017202354 cites W2107131609 @default.
- W2017202354 cites W2114819256 @default.
- W2017202354 cites W2118246710 @default.
- W2017202354 cites W2119531662 @default.
- W2017202354 cites W2130430899 @default.
- W2017202354 cites W2134663338 @default.
- W2017202354 cites W2136251662 @default.
- W2017202354 cites W2139573966 @default.
- W2017202354 cites W2143354507 @default.
- W2017202354 cites W2145525758 @default.
- W2017202354 cites W2154772499 @default.
- W2017202354 cites W2169027522 @default.
- W2017202354 cites W2426031434 @default.
- W2017202354 cites W2914885528 @default.
- W2017202354 doi "https://doi.org/10.1109/sibgrapi.2014.49" @default.
- W2017202354 hasPublicationYear "2014" @default.
- W2017202354 type Work @default.
- W2017202354 sameAs 2017202354 @default.
- W2017202354 citedByCount "7" @default.
- W2017202354 countsByYear W20172023542015 @default.
- W2017202354 countsByYear W20172023542016 @default.
- W2017202354 countsByYear W20172023542018 @default.
- W2017202354 countsByYear W20172023542019 @default.
- W2017202354 countsByYear W20172023542021 @default.
- W2017202354 crossrefType "proceedings-article" @default.
- W2017202354 hasAuthorship W2017202354A5014049890 @default.
- W2017202354 hasAuthorship W2017202354A5015267493 @default.
- W2017202354 hasAuthorship W2017202354A5038999508 @default.
- W2017202354 hasAuthorship W2017202354A5072908989 @default.
- W2017202354 hasAuthorship W2017202354A5080024357 @default.
- W2017202354 hasConcept C119857082 @default.
- W2017202354 hasConcept C153180895 @default.
- W2017202354 hasConcept C154945302 @default.
- W2017202354 hasConcept C160633673 @default.
- W2017202354 hasConcept C2776321320 @default.
- W2017202354 hasConcept C41008148 @default.
- W2017202354 hasConcept C58973888 @default.
- W2017202354 hasConcept C77967617 @default.
- W2017202354 hasConcept C95623464 @default.
- W2017202354 hasConceptScore W2017202354C119857082 @default.
- W2017202354 hasConceptScore W2017202354C153180895 @default.
- W2017202354 hasConceptScore W2017202354C154945302 @default.
- W2017202354 hasConceptScore W2017202354C160633673 @default.
- W2017202354 hasConceptScore W2017202354C2776321320 @default.
- W2017202354 hasConceptScore W2017202354C41008148 @default.
- W2017202354 hasConceptScore W2017202354C58973888 @default.
- W2017202354 hasConceptScore W2017202354C77967617 @default.
- W2017202354 hasConceptScore W2017202354C95623464 @default.
- W2017202354 hasLocation W20172023541 @default.
- W2017202354 hasOpenAccess W2017202354 @default.
- W2017202354 hasPrimaryLocation W20172023541 @default.
- W2017202354 hasRelatedWork W13815759 @default.
- W2017202354 hasRelatedWork W1992641321 @default.
- W2017202354 hasRelatedWork W2037311958 @default.
- W2017202354 hasRelatedWork W2118246710 @default.
- W2017202354 hasRelatedWork W2141195754 @default.
- W2017202354 hasRelatedWork W2186409800 @default.
- W2017202354 hasRelatedWork W2346218836 @default.
- W2017202354 hasRelatedWork W2527372324 @default.
- W2017202354 hasRelatedWork W2736600340 @default.
- W2017202354 hasRelatedWork W2736649198 @default.
- W2017202354 hasRelatedWork W2765622256 @default.
- W2017202354 hasRelatedWork W2767273378 @default.
- W2017202354 hasRelatedWork W2774514891 @default.
- W2017202354 hasRelatedWork W2903541310 @default.
- W2017202354 hasRelatedWork W2909347321 @default.
- W2017202354 hasRelatedWork W2963723365 @default.
- W2017202354 hasRelatedWork W2984721269 @default.
- W2017202354 hasRelatedWork W3000495970 @default.
- W2017202354 hasRelatedWork W3005983949 @default.
- W2017202354 hasRelatedWork W3100958491 @default.
- W2017202354 isParatext "false" @default.
- W2017202354 isRetracted "false" @default.
- W2017202354 magId "2017202354" @default.
- W2017202354 workType "article" @default.