Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017203485> ?p ?o ?g. }
- W2017203485 endingPage "5475" @default.
- W2017203485 startingPage "5469" @default.
- W2017203485 abstract "Apolipoprotein A-I (apoA-I), the major protein of high density lipoproteins, facilitates reverse cholesterol transport from peripheral tissue to liver. To determine the structural motifs important for modulating the in vivo catabolism of human apoA-I (h-apoA-I), we generated carboxyl-terminal truncation mutants at residues 201 (apoA-I201), 217 (apoA-I217), and 226 (apoA-I226) by site-directed mutagenesis. ApoA-I was expressed in Escherichia coli as a fusion protein with the maltose binding protein, which was removed by factor Xa cleavage. The in vivo kinetic analysis of the radioiodinated apoA-I in normolipemic rabbits revealed a markedly increased rate of catabolism for the truncated forms of apoA-I. The fractional catabolic rates (FCR) of 9.10 ± 1.28/day (±S.D.) for apoA-I201, 6.34 ± 0.81/day for apoA-I217, and 4.42 ± 0.51/day for apoA-I226 were much faster than the FCR of recombinant intact apoA-I (r-apoA-I, 0.93 ± 0.07/day) and h-apoA-I (0.91 ± 0.34/day). All the truncated forms of apoA-I were associated with very high density lipoproteins, whereas the intact recombinant apoA-I (r-apoA-I) and h-apoA-I associated with HDL2 and HDL3. Gel filtration chromatography revealed that in contrast to r-apoA-I, the mutant apoA-I201 associated with a phospholipid-rich rabbit apoA-I containing particle. Analysis by agarose gel electrophoresis demonstrated that the same mutant migrated in the pre-β position, but not within the α position as did r-apoA-I. These results indicate that the carboxylterminal region (residue 227-243) of apoA-I is critical in modulating the association of apoA-I with lipoproteins and in vivo metabolism of apoA-I. Apolipoprotein A-I (apoA-I), the major protein of high density lipoproteins, facilitates reverse cholesterol transport from peripheral tissue to liver. To determine the structural motifs important for modulating the in vivo catabolism of human apoA-I (h-apoA-I), we generated carboxyl-terminal truncation mutants at residues 201 (apoA-I201), 217 (apoA-I217), and 226 (apoA-I226) by site-directed mutagenesis. ApoA-I was expressed in Escherichia coli as a fusion protein with the maltose binding protein, which was removed by factor Xa cleavage. The in vivo kinetic analysis of the radioiodinated apoA-I in normolipemic rabbits revealed a markedly increased rate of catabolism for the truncated forms of apoA-I. The fractional catabolic rates (FCR) of 9.10 ± 1.28/day (±S.D.) for apoA-I201, 6.34 ± 0.81/day for apoA-I217, and 4.42 ± 0.51/day for apoA-I226 were much faster than the FCR of recombinant intact apoA-I (r-apoA-I, 0.93 ± 0.07/day) and h-apoA-I (0.91 ± 0.34/day). All the truncated forms of apoA-I were associated with very high density lipoproteins, whereas the intact recombinant apoA-I (r-apoA-I) and h-apoA-I associated with HDL2 and HDL3. Gel filtration chromatography revealed that in contrast to r-apoA-I, the mutant apoA-I201 associated with a phospholipid-rich rabbit apoA-I containing particle. Analysis by agarose gel electrophoresis demonstrated that the same mutant migrated in the pre-β position, but not within the α position as did r-apoA-I. These results indicate that the carboxylterminal region (residue 227-243) of apoA-I is critical in modulating the association of apoA-I with lipoproteins and in vivo metabolism of apoA-I." @default.
- W2017203485 created "2016-06-24" @default.
- W2017203485 creator A5015932441 @default.
- W2017203485 creator A5018988008 @default.
- W2017203485 creator A5044796020 @default.
- W2017203485 creator A5064997963 @default.
- W2017203485 creator A5068951391 @default.
- W2017203485 creator A5071684579 @default.
- W2017203485 creator A5082294209 @default.
- W2017203485 creator A5082331899 @default.
- W2017203485 creator A5086929283 @default.
- W2017203485 date "1995-03-01" @default.
- W2017203485 modified "2023-10-16" @default.
- W2017203485 title "Carboxyl-terminal Domain Truncation Alters Apolipoprotein A-I in Vivo Catabolism" @default.
- W2017203485 cites W1484260250 @default.
- W2017203485 cites W1502501056 @default.
- W2017203485 cites W1506009149 @default.
- W2017203485 cites W1508202965 @default.
- W2017203485 cites W1524712279 @default.
- W2017203485 cites W1526016286 @default.
- W2017203485 cites W1528298906 @default.
- W2017203485 cites W1531375840 @default.
- W2017203485 cites W1537433933 @default.
- W2017203485 cites W1540308607 @default.
- W2017203485 cites W1550868025 @default.
- W2017203485 cites W1552709412 @default.
- W2017203485 cites W1564061572 @default.
- W2017203485 cites W1565854032 @default.
- W2017203485 cites W1569835412 @default.
- W2017203485 cites W1573464874 @default.
- W2017203485 cites W1586626136 @default.
- W2017203485 cites W1596523068 @default.
- W2017203485 cites W1600384320 @default.
- W2017203485 cites W1602260890 @default.
- W2017203485 cites W1659662945 @default.
- W2017203485 cites W1675357682 @default.
- W2017203485 cites W1918638041 @default.
- W2017203485 cites W1941420237 @default.
- W2017203485 cites W1966583531 @default.
- W2017203485 cites W1969668277 @default.
- W2017203485 cites W1970325361 @default.
- W2017203485 cites W1971205809 @default.
- W2017203485 cites W1974261383 @default.
- W2017203485 cites W1975820549 @default.
- W2017203485 cites W1985464030 @default.
- W2017203485 cites W1996956472 @default.
- W2017203485 cites W2000426908 @default.
- W2017203485 cites W2007717885 @default.
- W2017203485 cites W2013618946 @default.
- W2017203485 cites W2018745327 @default.
- W2017203485 cites W2026121550 @default.
- W2017203485 cites W2034982233 @default.
- W2017203485 cites W2035995149 @default.
- W2017203485 cites W2037921656 @default.
- W2017203485 cites W2046526092 @default.
- W2017203485 cites W2050290881 @default.
- W2017203485 cites W2055993948 @default.
- W2017203485 cites W2061704447 @default.
- W2017203485 cites W2063342146 @default.
- W2017203485 cites W2075174922 @default.
- W2017203485 cites W2076962828 @default.
- W2017203485 cites W2078424668 @default.
- W2017203485 cites W2081253788 @default.
- W2017203485 cites W2085649019 @default.
- W2017203485 cites W2088615805 @default.
- W2017203485 cites W2088899149 @default.
- W2017203485 cites W2090034990 @default.
- W2017203485 cites W2109478287 @default.
- W2017203485 cites W2113504642 @default.
- W2017203485 cites W2114471659 @default.
- W2017203485 cites W2123587181 @default.
- W2017203485 cites W2126719129 @default.
- W2017203485 cites W2133113310 @default.
- W2017203485 cites W2139266365 @default.
- W2017203485 cites W2163655701 @default.
- W2017203485 cites W2167488666 @default.
- W2017203485 cites W2336386035 @default.
- W2017203485 cites W2341964113 @default.
- W2017203485 cites W2342969293 @default.
- W2017203485 cites W2401829918 @default.
- W2017203485 cites W2424907017 @default.
- W2017203485 cites W2425661354 @default.
- W2017203485 cites W40278976 @default.
- W2017203485 cites W4296976561 @default.
- W2017203485 doi "https://doi.org/10.1074/jbc.270.10.5469" @default.
- W2017203485 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/7890663" @default.
- W2017203485 hasPublicationYear "1995" @default.
- W2017203485 type Work @default.
- W2017203485 sameAs 2017203485 @default.
- W2017203485 citedByCount "56" @default.
- W2017203485 countsByYear W20172034852013 @default.
- W2017203485 countsByYear W20172034852014 @default.
- W2017203485 countsByYear W20172034852015 @default.
- W2017203485 countsByYear W20172034852016 @default.
- W2017203485 countsByYear W20172034852017 @default.
- W2017203485 countsByYear W20172034852018 @default.
- W2017203485 crossrefType "journal-article" @default.
- W2017203485 hasAuthorship W2017203485A5015932441 @default.