Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017209791> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2017209791 endingPage "412" @default.
- W2017209791 startingPage "401" @default.
- W2017209791 abstract "Many fisheries data are commonly summarized by two statistics: mean and variance (or standard deviation). Because observed values are subject to various errors, which often are large and heterogeneous in fisheries studies, outliers commonly exist in the data. The existence of outliers biases estimation of the mean and variance if traditional estimation methods are used. Instead of assuming that errors in fisheries data follow a normal distribution with a constant variance, we propose that errors associated with observations for a variable may encompass a mixture of different levels of normally distributed errors. Based on concepts from a robust regression method, least median of squares, that is not sensitive to atypical observations in data, we develop a simple algorithm to estimate mean and standard deviation. We compare the proposed robust estimation approach with traditional methods and Tukeyˈs biweight robust approach using simulated and field data. Based on simulations, we found little difference in estimated means and variances between the proposed and traditional methods when there were no outliers defined in simulated data. However, when outliers were defined in simulated data, the errors in estimation of the mean and its standard deviation were much smaller with the proposed method than were those estimated with traditional methods. Means and standard deviations estimated with the proposed method changed little, regardless of whether or not the simulated data were contaminated by atypical values. The proposed approach tended to have smaller estimation errors than did the robust biweight method. We demonstrate how the significance and interpretation of fisheries and ecological relationships may be adversely affected when outliers are present. We suggest using our proposed robust method to identify and down-weight outliers in estimating a mean and its standard deviation. One should justify deletion of the identified outliers using the knowledge about fish biology and environmental conditions independent of the variable assessed." @default.
- W2017209791 created "2016-06-24" @default.
- W2017209791 creator A5028939223 @default.
- W2017209791 creator A5085482305 @default.
- W2017209791 date "1995-05-01" @default.
- W2017209791 modified "2023-09-25" @default.
- W2017209791 title "Robust Estimation of Mean and Variance in Fisheries" @default.
- W2017209791 doi "https://doi.org/10.1577/1548-8659(1995)124<0401:reomav>2.3.co;2" @default.
- W2017209791 hasPublicationYear "1995" @default.
- W2017209791 type Work @default.
- W2017209791 sameAs 2017209791 @default.
- W2017209791 citedByCount "4" @default.
- W2017209791 crossrefType "journal-article" @default.
- W2017209791 hasAuthorship W2017209791A5028939223 @default.
- W2017209791 hasAuthorship W2017209791A5085482305 @default.
- W2017209791 hasConcept C105795698 @default.
- W2017209791 hasConcept C121955636 @default.
- W2017209791 hasConcept C144133560 @default.
- W2017209791 hasConcept C149782125 @default.
- W2017209791 hasConcept C162324750 @default.
- W2017209791 hasConcept C18747219 @default.
- W2017209791 hasConcept C187736073 @default.
- W2017209791 hasConcept C196083921 @default.
- W2017209791 hasConcept C22679943 @default.
- W2017209791 hasConcept C2781162219 @default.
- W2017209791 hasConcept C33923547 @default.
- W2017209791 hasConcept C41008148 @default.
- W2017209791 hasConcept C67226441 @default.
- W2017209791 hasConcept C70259352 @default.
- W2017209791 hasConcept C79337645 @default.
- W2017209791 hasConcept C83546350 @default.
- W2017209791 hasConcept C96250715 @default.
- W2017209791 hasConceptScore W2017209791C105795698 @default.
- W2017209791 hasConceptScore W2017209791C121955636 @default.
- W2017209791 hasConceptScore W2017209791C144133560 @default.
- W2017209791 hasConceptScore W2017209791C149782125 @default.
- W2017209791 hasConceptScore W2017209791C162324750 @default.
- W2017209791 hasConceptScore W2017209791C18747219 @default.
- W2017209791 hasConceptScore W2017209791C187736073 @default.
- W2017209791 hasConceptScore W2017209791C196083921 @default.
- W2017209791 hasConceptScore W2017209791C22679943 @default.
- W2017209791 hasConceptScore W2017209791C2781162219 @default.
- W2017209791 hasConceptScore W2017209791C33923547 @default.
- W2017209791 hasConceptScore W2017209791C41008148 @default.
- W2017209791 hasConceptScore W2017209791C67226441 @default.
- W2017209791 hasConceptScore W2017209791C70259352 @default.
- W2017209791 hasConceptScore W2017209791C79337645 @default.
- W2017209791 hasConceptScore W2017209791C83546350 @default.
- W2017209791 hasConceptScore W2017209791C96250715 @default.
- W2017209791 hasIssue "3" @default.
- W2017209791 hasLocation W20172097911 @default.
- W2017209791 hasOpenAccess W2017209791 @default.
- W2017209791 hasPrimaryLocation W20172097911 @default.
- W2017209791 hasRelatedWork W1585351680 @default.
- W2017209791 hasRelatedWork W1600426151 @default.
- W2017209791 hasRelatedWork W1605974327 @default.
- W2017209791 hasRelatedWork W2017209791 @default.
- W2017209791 hasRelatedWork W2018697919 @default.
- W2017209791 hasRelatedWork W2023930212 @default.
- W2017209791 hasRelatedWork W2613977794 @default.
- W2017209791 hasRelatedWork W3076678067 @default.
- W2017209791 hasRelatedWork W3121219282 @default.
- W2017209791 hasRelatedWork W4380879348 @default.
- W2017209791 hasVolume "124" @default.
- W2017209791 isParatext "false" @default.
- W2017209791 isRetracted "false" @default.
- W2017209791 magId "2017209791" @default.
- W2017209791 workType "article" @default.