Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017215520> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2017215520 abstract "We study hierarchical classification of products in electronic commerce, classifying a text description of a product into one of the leaf classes of a tree-structure taxonomy. In particular, we investigate two essential problems, performance evaluation and learning, in a synergistic way. Unless we know what is the appropriate performance evaluation metric for a task, we are not going to learn a classifier of maximum utility for the task. Given the characteristics of the task of hierarchical product classification, we shed insight into how and why common evaluation metrics such as error rate can be misleading, which is applicable for treating other real world applications. The analysis leads to a new performance evaluation metric that tailors this task to reflect a vendor's business goal of maximizing revenue. The proposed metric has an intuitive meaning as the average revenue loss, which depends on both the value of individual products and the hierarchical distance between the true class and the predicted class. Correspondingly, our learning algorithm uses multi-class SVM with margin re-scaling to optimize the proposed metric, instead of error rate or other common metrics. Margin re-scaling is sensitive to the scaling of loss functions. We propose a loss normalization approach to appropriately calibrating the scaling of loss functions, which is applicable to general classification and structured prediction tasks whenever using structured SVM with margin re-scaling. Experiments on a large dataset show that our approach outperforms standard multi-class SVM in terms of the proposed metric, effectively reducing the average revenue loss." @default.
- W2017215520 created "2016-06-24" @default.
- W2017215520 creator A5028304434 @default.
- W2017215520 creator A5055338447 @default.
- W2017215520 date "2013-01-01" @default.
- W2017215520 modified "2023-09-23" @default.
- W2017215520 title "Cost-sensitive learning for large-scale hierarchical classification" @default.
- W2017215520 cites W1020256256 @default.
- W2017215520 cites W1484777458 @default.
- W2017215520 cites W167016754 @default.
- W2017215520 cites W2003661472 @default.
- W2017215520 cites W2008835805 @default.
- W2017215520 cites W2014566476 @default.
- W2017215520 cites W2017894137 @default.
- W2017215520 cites W2058732827 @default.
- W2017215520 cites W2063862666 @default.
- W2017215520 cites W2085897424 @default.
- W2017215520 cites W2100454174 @default.
- W2017215520 cites W2105842272 @default.
- W2017215520 cites W2115364117 @default.
- W2017215520 cites W2117225622 @default.
- W2017215520 cites W2118585731 @default.
- W2017215520 cites W2142261479 @default.
- W2017215520 cites W2143774383 @default.
- W2017215520 cites W2156909104 @default.
- W2017215520 cites W2157791002 @default.
- W2017215520 cites W2167197286 @default.
- W2017215520 cites W2169660367 @default.
- W2017215520 cites W2209072118 @default.
- W2017215520 cites W72187777 @default.
- W2017215520 doi "https://doi.org/10.1145/2505515.2505582" @default.
- W2017215520 hasPublicationYear "2013" @default.
- W2017215520 type Work @default.
- W2017215520 sameAs 2017215520 @default.
- W2017215520 citedByCount "18" @default.
- W2017215520 countsByYear W20172155202014 @default.
- W2017215520 countsByYear W20172155202015 @default.
- W2017215520 countsByYear W20172155202017 @default.
- W2017215520 countsByYear W20172155202018 @default.
- W2017215520 countsByYear W20172155202019 @default.
- W2017215520 countsByYear W20172155202020 @default.
- W2017215520 countsByYear W20172155202021 @default.
- W2017215520 countsByYear W20172155202022 @default.
- W2017215520 countsByYear W20172155202023 @default.
- W2017215520 crossrefType "proceedings-article" @default.
- W2017215520 hasAuthorship W2017215520A5028304434 @default.
- W2017215520 hasAuthorship W2017215520A5055338447 @default.
- W2017215520 hasConcept C119857082 @default.
- W2017215520 hasConcept C12267149 @default.
- W2017215520 hasConcept C124101348 @default.
- W2017215520 hasConcept C154945302 @default.
- W2017215520 hasConcept C162324750 @default.
- W2017215520 hasConcept C176217482 @default.
- W2017215520 hasConcept C21547014 @default.
- W2017215520 hasConcept C2524010 @default.
- W2017215520 hasConcept C33923547 @default.
- W2017215520 hasConcept C41008148 @default.
- W2017215520 hasConcept C48044578 @default.
- W2017215520 hasConcept C77088390 @default.
- W2017215520 hasConcept C774472 @default.
- W2017215520 hasConcept C95623464 @default.
- W2017215520 hasConcept C99844830 @default.
- W2017215520 hasConceptScore W2017215520C119857082 @default.
- W2017215520 hasConceptScore W2017215520C12267149 @default.
- W2017215520 hasConceptScore W2017215520C124101348 @default.
- W2017215520 hasConceptScore W2017215520C154945302 @default.
- W2017215520 hasConceptScore W2017215520C162324750 @default.
- W2017215520 hasConceptScore W2017215520C176217482 @default.
- W2017215520 hasConceptScore W2017215520C21547014 @default.
- W2017215520 hasConceptScore W2017215520C2524010 @default.
- W2017215520 hasConceptScore W2017215520C33923547 @default.
- W2017215520 hasConceptScore W2017215520C41008148 @default.
- W2017215520 hasConceptScore W2017215520C48044578 @default.
- W2017215520 hasConceptScore W2017215520C77088390 @default.
- W2017215520 hasConceptScore W2017215520C774472 @default.
- W2017215520 hasConceptScore W2017215520C95623464 @default.
- W2017215520 hasConceptScore W2017215520C99844830 @default.
- W2017215520 hasLocation W20172155201 @default.
- W2017215520 hasOpenAccess W2017215520 @default.
- W2017215520 hasPrimaryLocation W20172155201 @default.
- W2017215520 hasRelatedWork W1996541855 @default.
- W2017215520 hasRelatedWork W2101819884 @default.
- W2017215520 hasRelatedWork W2379140333 @default.
- W2017215520 hasRelatedWork W2937631562 @default.
- W2017215520 hasRelatedWork W2961085424 @default.
- W2017215520 hasRelatedWork W3136979370 @default.
- W2017215520 hasRelatedWork W3194539120 @default.
- W2017215520 hasRelatedWork W3195168932 @default.
- W2017215520 hasRelatedWork W4205958290 @default.
- W2017215520 hasRelatedWork W4361795583 @default.
- W2017215520 isParatext "false" @default.
- W2017215520 isRetracted "false" @default.
- W2017215520 magId "2017215520" @default.
- W2017215520 workType "article" @default.