Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017222740> ?p ?o ?g. }
- W2017222740 endingPage "2057" @default.
- W2017222740 startingPage "2031" @default.
- W2017222740 abstract "The harmonic input method of nonlinear system identification is modified to allow the Volterra series approach to be used for psychophysical investigation of various aspects of human pattern vision in the spatial frequency domain. While it is well known that only one modulation transfer function provides a complete characterization of a linear system, a number of multidimensional transfer functions are needed to identify a nonlinear system. We have shown, that so far as the contrast sensitivity to sine-wave gratings may be used for an empirical estimate of the first-order modulation transfer function of the human visual system, the contrast sensitivity to difference harmonics may be used as an empirical estimate of the second-order modulation transfer function. A difference harmonic arises from a mixture of two sine-wave gratings resulting from the nonlinearity of the visual system. Difference harmonic, experienced as some periodic beatlike structure, may still be observed if frequencies of the component gratings are higher than the maximum visual acuity. The visibility of the low-frequency beatlike pattern produced by pairs of sine-wave gratings, which themselves are of spatial frequencies too high to be resolved, could be accounted for either by a difference frequency distortion product (Burton, 1973) or by a special beat detector (Derrington & Badcock, 1985). We found that increasing the contrast of one component grating may be compensated for by reducing the contrast of the other component grating, the beatlike pattern being at threshold. This is exactly what would be expected if the beatlike pattern is detected because of the difference harmonics produced by nonlinearity of the visual system. We have determined contrast thresholds for the difference harmonics which occur between two unresolved different spatial frequencies. The contrast sensitivity function for difference harmonics was found to have a marked similarity both in the shape and position of peak sensitivity to the contrast sensitivity function for single sine-wave gratings. Another important characteristic of the contrast sensitivity function for difference harmonics is that it depends only on the frequency difference, Δf = f1 − f2, rather than on the value of either f1 or f2. All this indicates that a difference harmonic arises from local nonlinearities in the visual system. More specifically, the visual system may be represented as a cascade system, composed of a linear system with transfer function O(f) followed by a nonlinear element, r(·), without spatial spread in cascade with another linear system with transfer function P(f). The nth order transfer function of this cascade system, Hn(f1,...,fn) can be expressed in the following way: Hn(f1,...,fn) = anO(f1)P(f1 + ... + fn) where an is the nth coefficient in the Taylor series expansion for the nonlinear function r(·). It follows from this that the measurement of the first- and second-order transfer functions is sufficient to determine O(f) and P(f). We have derived the estimates of cO(f) and P(f) from contrast sensitivity functions for single sine-wave gratings and difference harmonics by the least squares method." @default.
- W2017222740 created "2016-06-24" @default.
- W2017222740 creator A5075777349 @default.
- W2017222740 date "1990-01-01" @default.
- W2017222740 modified "2023-09-28" @default.
- W2017222740 title "Nonlinear analysis of spatial vision using first-and-second-order volterra transfer functions measurement" @default.
- W2017222740 cites W1514962082 @default.
- W2017222740 cites W1753543105 @default.
- W2017222740 cites W1967839538 @default.
- W2017222740 cites W1968512559 @default.
- W2017222740 cites W1969722113 @default.
- W2017222740 cites W1970030337 @default.
- W2017222740 cites W1971014801 @default.
- W2017222740 cites W1973070930 @default.
- W2017222740 cites W1974366055 @default.
- W2017222740 cites W1974459074 @default.
- W2017222740 cites W1975678740 @default.
- W2017222740 cites W1978175365 @default.
- W2017222740 cites W1984479789 @default.
- W2017222740 cites W1987937110 @default.
- W2017222740 cites W1987972951 @default.
- W2017222740 cites W1988170859 @default.
- W2017222740 cites W1989558763 @default.
- W2017222740 cites W1989635697 @default.
- W2017222740 cites W1994375281 @default.
- W2017222740 cites W1995352643 @default.
- W2017222740 cites W1996518889 @default.
- W2017222740 cites W1998896459 @default.
- W2017222740 cites W1999908130 @default.
- W2017222740 cites W2000501913 @default.
- W2017222740 cites W2000551536 @default.
- W2017222740 cites W2000799394 @default.
- W2017222740 cites W2010810702 @default.
- W2017222740 cites W2010814572 @default.
- W2017222740 cites W2010911511 @default.
- W2017222740 cites W2013305735 @default.
- W2017222740 cites W2014845093 @default.
- W2017222740 cites W2016273594 @default.
- W2017222740 cites W2017600612 @default.
- W2017222740 cites W2017645333 @default.
- W2017222740 cites W2020470421 @default.
- W2017222740 cites W2024336509 @default.
- W2017222740 cites W2027915621 @default.
- W2017222740 cites W2028006085 @default.
- W2017222740 cites W2028050041 @default.
- W2017222740 cites W2030387763 @default.
- W2017222740 cites W2030704345 @default.
- W2017222740 cites W2031019611 @default.
- W2017222740 cites W2032106609 @default.
- W2017222740 cites W2032385615 @default.
- W2017222740 cites W2035989480 @default.
- W2017222740 cites W2038852712 @default.
- W2017222740 cites W2042100151 @default.
- W2017222740 cites W2042236083 @default.
- W2017222740 cites W2042266315 @default.
- W2017222740 cites W2043052802 @default.
- W2017222740 cites W2048140620 @default.
- W2017222740 cites W2049092331 @default.
- W2017222740 cites W2051383618 @default.
- W2017222740 cites W2052922030 @default.
- W2017222740 cites W2053934587 @default.
- W2017222740 cites W2054622788 @default.
- W2017222740 cites W2057697885 @default.
- W2017222740 cites W2058564557 @default.
- W2017222740 cites W2065705052 @default.
- W2017222740 cites W2069405432 @default.
- W2017222740 cites W2069813707 @default.
- W2017222740 cites W2071147527 @default.
- W2017222740 cites W2072660026 @default.
- W2017222740 cites W2073542883 @default.
- W2017222740 cites W2073824405 @default.
- W2017222740 cites W2076504323 @default.
- W2017222740 cites W2078802060 @default.
- W2017222740 cites W2087627577 @default.
- W2017222740 cites W2088649859 @default.
- W2017222740 cites W2089495917 @default.
- W2017222740 cites W2099027981 @default.
- W2017222740 cites W2099995386 @default.
- W2017222740 cites W2104624100 @default.
- W2017222740 cites W2108536210 @default.
- W2017222740 cites W2111356946 @default.
- W2017222740 cites W2112061021 @default.
- W2017222740 cites W2113192608 @default.
- W2017222740 cites W2119628699 @default.
- W2017222740 cites W2123827131 @default.
- W2017222740 cites W2125402047 @default.
- W2017222740 cites W2127958842 @default.
- W2017222740 cites W2133770453 @default.
- W2017222740 cites W2146685310 @default.
- W2017222740 cites W2153782322 @default.
- W2017222740 cites W2154903146 @default.
- W2017222740 cites W2167553001 @default.
- W2017222740 cites W2398037275 @default.
- W2017222740 cites W2469961570 @default.
- W2017222740 cites W2561860639 @default.
- W2017222740 cites W4206065158 @default.
- W2017222740 cites W4233626528 @default.
- W2017222740 cites W4252649136 @default.