Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017230732> ?p ?o ?g. }
- W2017230732 endingPage "919" @default.
- W2017230732 startingPage "909" @default.
- W2017230732 abstract "Moving Horizon Estimation (MHE) is an efficient state estimation method used for nonlinear systems. Since MHE is optimization-based it provides a good framework to handle bounds and constraints when they are required to obtain good state and parameter estimates. Recent research in this area has been directed to develop computationally efficient algorithms for on-line application. However, an open issue in MHE is related to the approximation of the so-called arrival cost and of the parameters associated with it. The arrival cost is very important since it provides a means to incorporate information from the previous measurements to the current state estimate. It is difficult to calculate the true value of the arrival cost; therefore approximation techniques are commonly applied. The conventional method is to use the Extended Kalman Filter (EKF) to approximate the covariance matrix at the beginning of the prediction horizon. This approximation method assumes that the state estimation error is Gaussian. However, when state estimates are bounded or the system is nonlinear, the distribution of the estimation error becomes non-Gaussian. This introduces errors in the arrival cost term which can be mitigated by using longer horizon lengths. This measure, however, significantly increases the size of the nonlinear optimization problem that needs to be solved on-line at each sampling time. Recently, particle filters and related methods have become popular filtering methods that are based on Monte-Carlo simulations. In this way they implement an optimal recursive Bayesian Filter that takes advantage of particle statistics to determine the probability density properties of the states. In the present work, we exploit the features of these sampling-based methods to approximate the arrival cost parameters in the MHE formulation. Also, we show a way to construct an estimate of the log-likelihood of the conditional density of the states using a Particle Filter (PF), which can be used as an approximation of the arrival cost. In both cases, because particles are being propagated through the nonlinear system, the assumption of Gaussianity of the state estimation error can be dropped. Here we developed and tested EKF and eight different types of sample based filters for updating the arrival cost parameters in the weighted 2-norm approach (see Table 1 for the full list). We compare the use of constrained and unconstrained filters, and note that when bounds are required the constrained particle filters give a better approximation of the arrival cost parameters that improve the performance of MHE. Moreover, we also used PF concepts to directly approximate the negative of the log-likelihood of the conditional density using unconstrained and constrained particle filters to update the importance distribution. Also, we show that a benefit of having a better approximation of the arrival cost is that the horizon length required for the MHE can be significantly smaller than when using the conventional MHE approach. This is illustrated by simulation studies done on benchmark problems proposed in the state estimation literature." @default.
- W2017230732 created "2016-06-24" @default.
- W2017230732 creator A5006123606 @default.
- W2017230732 creator A5052825722 @default.
- W2017230732 creator A5059178238 @default.
- W2017230732 date "2011-07-01" @default.
- W2017230732 modified "2023-10-18" @default.
- W2017230732 title "Constrained particle filter approach to approximate the arrival cost in Moving Horizon Estimation" @default.
- W2017230732 cites W1983242376 @default.
- W2017230732 cites W2007052123 @default.
- W2017230732 cites W2011418396 @default.
- W2017230732 cites W2019069061 @default.
- W2017230732 cites W2021545103 @default.
- W2017230732 cites W2022192511 @default.
- W2017230732 cites W2037914955 @default.
- W2017230732 cites W2057184806 @default.
- W2017230732 cites W2062736856 @default.
- W2017230732 cites W2075405270 @default.
- W2017230732 cites W2080973322 @default.
- W2017230732 cites W2086998418 @default.
- W2017230732 cites W2087518243 @default.
- W2017230732 cites W2091883880 @default.
- W2017230732 cites W2123487311 @default.
- W2017230732 cites W2123871098 @default.
- W2017230732 cites W2129276668 @default.
- W2017230732 cites W2130925922 @default.
- W2017230732 cites W2138194424 @default.
- W2017230732 cites W2160337655 @default.
- W2017230732 cites W2179860363 @default.
- W2017230732 doi "https://doi.org/10.1016/j.jprocont.2011.03.004" @default.
- W2017230732 hasPublicationYear "2011" @default.
- W2017230732 type Work @default.
- W2017230732 sameAs 2017230732 @default.
- W2017230732 citedByCount "70" @default.
- W2017230732 countsByYear W20172307322012 @default.
- W2017230732 countsByYear W20172307322013 @default.
- W2017230732 countsByYear W20172307322014 @default.
- W2017230732 countsByYear W20172307322015 @default.
- W2017230732 countsByYear W20172307322016 @default.
- W2017230732 countsByYear W20172307322017 @default.
- W2017230732 countsByYear W20172307322018 @default.
- W2017230732 countsByYear W20172307322019 @default.
- W2017230732 countsByYear W20172307322020 @default.
- W2017230732 countsByYear W20172307322021 @default.
- W2017230732 countsByYear W20172307322022 @default.
- W2017230732 countsByYear W20172307322023 @default.
- W2017230732 crossrefType "journal-article" @default.
- W2017230732 hasAuthorship W2017230732A5006123606 @default.
- W2017230732 hasAuthorship W2017230732A5052825722 @default.
- W2017230732 hasAuthorship W2017230732A5059178238 @default.
- W2017230732 hasConcept C105795698 @default.
- W2017230732 hasConcept C11413529 @default.
- W2017230732 hasConcept C121332964 @default.
- W2017230732 hasConcept C126255220 @default.
- W2017230732 hasConcept C157286648 @default.
- W2017230732 hasConcept C158622935 @default.
- W2017230732 hasConcept C163716315 @default.
- W2017230732 hasConcept C178650346 @default.
- W2017230732 hasConcept C19499675 @default.
- W2017230732 hasConcept C206833254 @default.
- W2017230732 hasConcept C33923547 @default.
- W2017230732 hasConcept C41008148 @default.
- W2017230732 hasConcept C52421305 @default.
- W2017230732 hasConcept C52740198 @default.
- W2017230732 hasConcept C62520636 @default.
- W2017230732 hasConceptScore W2017230732C105795698 @default.
- W2017230732 hasConceptScore W2017230732C11413529 @default.
- W2017230732 hasConceptScore W2017230732C121332964 @default.
- W2017230732 hasConceptScore W2017230732C126255220 @default.
- W2017230732 hasConceptScore W2017230732C157286648 @default.
- W2017230732 hasConceptScore W2017230732C158622935 @default.
- W2017230732 hasConceptScore W2017230732C163716315 @default.
- W2017230732 hasConceptScore W2017230732C178650346 @default.
- W2017230732 hasConceptScore W2017230732C19499675 @default.
- W2017230732 hasConceptScore W2017230732C206833254 @default.
- W2017230732 hasConceptScore W2017230732C33923547 @default.
- W2017230732 hasConceptScore W2017230732C41008148 @default.
- W2017230732 hasConceptScore W2017230732C52421305 @default.
- W2017230732 hasConceptScore W2017230732C52740198 @default.
- W2017230732 hasConceptScore W2017230732C62520636 @default.
- W2017230732 hasIssue "6" @default.
- W2017230732 hasLocation W20172307321 @default.
- W2017230732 hasOpenAccess W2017230732 @default.
- W2017230732 hasPrimaryLocation W20172307321 @default.
- W2017230732 hasRelatedWork W2005233392 @default.
- W2017230732 hasRelatedWork W2111676726 @default.
- W2017230732 hasRelatedWork W2137943889 @default.
- W2017230732 hasRelatedWork W2147818306 @default.
- W2017230732 hasRelatedWork W2321547725 @default.
- W2017230732 hasRelatedWork W2358623053 @default.
- W2017230732 hasRelatedWork W2389270967 @default.
- W2017230732 hasRelatedWork W2520378196 @default.
- W2017230732 hasRelatedWork W2939299310 @default.
- W2017230732 hasRelatedWork W4296473512 @default.
- W2017230732 hasVolume "21" @default.
- W2017230732 isParatext "false" @default.
- W2017230732 isRetracted "false" @default.
- W2017230732 magId "2017230732" @default.