Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017239091> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2017239091 abstract "Interband photoluminescence (PL) and absorption spectra of $ntext{ensuremath{-}}mathrm{In}mathrm{N}$ samples with Hall concentrations from $3.6ifmmodetimeselsetexttimesfi{}{10}^{17}phantom{rule{0.3em}{0ex}}text{to}phantom{rule{0.3em}{0ex}}6ifmmodetimeselsetexttimesfi{}{10}^{18}phantom{rule{0.3em}{0ex}}{mathrm{cm}}^{ensuremath{-}3}$ were studied. Sample thicknesses were in the range from $12phantom{rule{0.3em}{0ex}}text{to}phantom{rule{0.3em}{0ex}}0.47phantom{rule{0.3em}{0ex}}ensuremath{mu}mathrm{m}$. A set of lasers for the PL excitation in the energy range from 2.41 down to $0.81phantom{rule{0.3em}{0ex}}mathrm{eV}$ was used. The well-resolved structure consisting of three peaks was observed in the PL spectra of the high-quality samples in the energy interval from $0.50phantom{rule{0.3em}{0ex}}text{to}phantom{rule{0.3em}{0ex}}0.67phantom{rule{0.3em}{0ex}}mathrm{eV}$ at liquid-helium and nitrogen temperatures. We attributed one of two low-energy features of the spectra to the recombination of degenerate electrons with the holes trapped by deep acceptors with a binding energy of ${E}_{mathit{da}}=0.050--0.055phantom{rule{0.3em}{0ex}}mathrm{eV}$, and the other one was attributed to the LO-phonon replica of this band. The higher-energy PL peak is considered as a complex band formed by two mechanisms. The first one is related to the transitions of electrons to the states of shallow acceptors with a binding energy of ${E}_{mathit{sh}}=0.005--0.010phantom{rule{0.3em}{0ex}}mathrm{eV}$ and/or to the states of the Urbach tail populated by photoholes. The second mechanism contributing to this band is the band-to-band recombination of free holes and electrons. The relative intensities of the two higher-energy PL peaks were found to be strongly dependent on temperature and excitation power. A model approach taking into account the Urbach tails of conduction and valence bands and the acceptor states was developed. The calculations of PL and the absorption spectra have shown that the band gap of InN in the limit of zero temperature and zero electron concentration is close to $0.665--0.670phantom{rule{0.3em}{0ex}}mathrm{eV}$. The model calculations allowed us to explain the structures of all the spectra observed, their dependence on the excitation power, and the temperature variations of PL and the absorption spectra. The effective masses of electrons at the $ensuremath{Gamma}$ point equal to 0.042 and 0.07 of free-electron mass were tested in calculations. The conductivity band was assumed to be nonparabolic." @default.
- W2017239091 created "2016-06-24" @default.
- W2017239091 creator A5023786888 @default.
- W2017239091 creator A5051185714 @default.
- W2017239091 creator A5056560457 @default.
- W2017239091 creator A5063185781 @default.
- W2017239091 creator A5065464062 @default.
- W2017239091 creator A5076080096 @default.
- W2017239091 creator A5084535561 @default.
- W2017239091 creator A5091580709 @default.
- W2017239091 date "2005-05-26" @default.
- W2017239091 modified "2023-10-16" @default.
- W2017239091 title "Acceptor states in the photoluminescence spectra of<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mrow><mml:mi>n</mml:mi><mml:mtext>−</mml:mtext><mml:mi mathvariant=normal>In</mml:mi><mml:mi mathvariant=normal>N</mml:mi></mml:mrow></mml:math>" @default.
- W2017239091 cites W103176097 @default.
- W2017239091 cites W1512089265 @default.
- W2017239091 cites W1965759422 @default.
- W2017239091 cites W1967805631 @default.
- W2017239091 cites W1968026948 @default.
- W2017239091 cites W1971223999 @default.
- W2017239091 cites W1971432626 @default.
- W2017239091 cites W1974638646 @default.
- W2017239091 cites W1976431236 @default.
- W2017239091 cites W1977045271 @default.
- W2017239091 cites W1977257106 @default.
- W2017239091 cites W1977711922 @default.
- W2017239091 cites W1979099496 @default.
- W2017239091 cites W1980230186 @default.
- W2017239091 cites W1987789084 @default.
- W2017239091 cites W1988213965 @default.
- W2017239091 cites W1995421517 @default.
- W2017239091 cites W2006271366 @default.
- W2017239091 cites W2017733593 @default.
- W2017239091 cites W2018646543 @default.
- W2017239091 cites W2018668712 @default.
- W2017239091 cites W2028585338 @default.
- W2017239091 cites W2041568211 @default.
- W2017239091 cites W2048740011 @default.
- W2017239091 cites W2049540925 @default.
- W2017239091 cites W2055054777 @default.
- W2017239091 cites W2057095922 @default.
- W2017239091 cites W2062707521 @default.
- W2017239091 cites W2070992767 @default.
- W2017239091 cites W2082318210 @default.
- W2017239091 cites W2085591360 @default.
- W2017239091 cites W2088519593 @default.
- W2017239091 cites W2090200659 @default.
- W2017239091 cites W2091471005 @default.
- W2017239091 cites W2094308812 @default.
- W2017239091 cites W2167851484 @default.
- W2017239091 cites W2321287749 @default.
- W2017239091 doi "https://doi.org/10.1103/physrevb.71.195207" @default.
- W2017239091 hasPublicationYear "2005" @default.
- W2017239091 type Work @default.
- W2017239091 sameAs 2017239091 @default.
- W2017239091 citedByCount "137" @default.
- W2017239091 countsByYear W20172390912012 @default.
- W2017239091 countsByYear W20172390912013 @default.
- W2017239091 countsByYear W20172390912014 @default.
- W2017239091 countsByYear W20172390912015 @default.
- W2017239091 countsByYear W20172390912016 @default.
- W2017239091 countsByYear W20172390912017 @default.
- W2017239091 countsByYear W20172390912018 @default.
- W2017239091 countsByYear W20172390912019 @default.
- W2017239091 countsByYear W20172390912021 @default.
- W2017239091 countsByYear W20172390912022 @default.
- W2017239091 countsByYear W20172390912023 @default.
- W2017239091 crossrefType "journal-article" @default.
- W2017239091 hasAuthorship W2017239091A5023786888 @default.
- W2017239091 hasAuthorship W2017239091A5051185714 @default.
- W2017239091 hasAuthorship W2017239091A5056560457 @default.
- W2017239091 hasAuthorship W2017239091A5063185781 @default.
- W2017239091 hasAuthorship W2017239091A5065464062 @default.
- W2017239091 hasAuthorship W2017239091A5076080096 @default.
- W2017239091 hasAuthorship W2017239091A5084535561 @default.
- W2017239091 hasAuthorship W2017239091A5091580709 @default.
- W2017239091 hasConcept C120665830 @default.
- W2017239091 hasConcept C121332964 @default.
- W2017239091 hasConcept C85080765 @default.
- W2017239091 hasConceptScore W2017239091C120665830 @default.
- W2017239091 hasConceptScore W2017239091C121332964 @default.
- W2017239091 hasConceptScore W2017239091C85080765 @default.
- W2017239091 hasIssue "19" @default.
- W2017239091 hasLocation W20172390911 @default.
- W2017239091 hasOpenAccess W2017239091 @default.
- W2017239091 hasPrimaryLocation W20172390911 @default.
- W2017239091 hasRelatedWork W1536502753 @default.
- W2017239091 hasRelatedWork W2902782467 @default.
- W2017239091 hasRelatedWork W2935759653 @default.
- W2017239091 hasRelatedWork W3105167352 @default.
- W2017239091 hasRelatedWork W3148032049 @default.
- W2017239091 hasRelatedWork W54078636 @default.
- W2017239091 hasRelatedWork W1501425562 @default.
- W2017239091 hasRelatedWork W2298861036 @default.
- W2017239091 hasRelatedWork W2954470139 @default.
- W2017239091 hasRelatedWork W3084825885 @default.
- W2017239091 hasVolume "71" @default.
- W2017239091 isParatext "false" @default.
- W2017239091 isRetracted "false" @default.
- W2017239091 magId "2017239091" @default.
- W2017239091 workType "article" @default.