Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017239110> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2017239110 endingPage "408" @default.
- W2017239110 startingPage "379" @default.
- W2017239110 abstract "Small rigid spherical partials are settling under gravity through Newtonian fluid, and the volume fraction of the particles (ϕ) is small although sufficiently large for the effects of interactions between pairs of particles to be significant. Two neighbouring particles interact both hydrodynamically (with low-Reynolds-number flow about each particle) and through the exertion of a mutual force of molecular or electrical origin which is mainly repulsive; and they also diffuse relatively to each other by Brownian motion. The dispersion contains several species of particle which differ in radius and density. The purpose of the paper is to derive formulae for the mean velocity of the particles of each species correct to order ϕ, that is, with allowance for the effect of pair interactions. The method devised for the calculation of the mean velocity in a monodisperse system (Batchelor 1972) is first generalized to give the mean additional velocity of a particle of species i due to the presence of a particle of species j in terms of the pair mobility functions and the probability distribution p ii ( r ) for the relative position of an i and a j particle. The second step is to determine p ij ( r ) from a differential equation of Fokker-Planck type representing the effects of relative motion of the two particles due to gravity, the interparticle force, and Brownian diffusion. The solution of this equation is investigated for a range of special conditions, including large values of the Péclet number (negligible effect of Brownian motion); small values of the Ptclet number; and extreme values of the ratio of the radii of the two spheres. There are found to be three different limits for p ij ( r ) corresponding to different ways of approaching the state of equal sphere radii, equal sphere densities, and zero Brownian relative diffusivity. Consideration of the effect of relative diffusion on the pair-distribution function shows the existence of an effective interactive force between the two particles and consequently a contribution to the mean velocity of the particles of each species. The direct contributions to the mean velocity of particles of one species due to Brownian diffusion and to the interparticle force are non-zero whenever the pair-distribution function is non-isotropic, that is, at all except large values of the Péclet number. The forms taken by the expression for the mean velocity of the particles of one species in the various cases listed above are examined. Numerical values will be presented in Part 2." @default.
- W2017239110 created "2016-06-24" @default.
- W2017239110 creator A5064156879 @default.
- W2017239110 date "1982-06-01" @default.
- W2017239110 modified "2023-09-30" @default.
- W2017239110 title "Sedimentation in a dilute polydisperse system of interacting spheres. Part 1. General theory" @default.
- W2017239110 cites W2060007748 @default.
- W2017239110 cites W61455274 @default.
- W2017239110 doi "https://doi.org/10.1017/s0022112082001402" @default.
- W2017239110 hasPublicationYear "1982" @default.
- W2017239110 type Work @default.
- W2017239110 sameAs 2017239110 @default.
- W2017239110 citedByCount "387" @default.
- W2017239110 countsByYear W20172391102012 @default.
- W2017239110 countsByYear W20172391102013 @default.
- W2017239110 countsByYear W20172391102014 @default.
- W2017239110 countsByYear W20172391102015 @default.
- W2017239110 countsByYear W20172391102016 @default.
- W2017239110 countsByYear W20172391102017 @default.
- W2017239110 countsByYear W20172391102018 @default.
- W2017239110 countsByYear W20172391102019 @default.
- W2017239110 countsByYear W20172391102020 @default.
- W2017239110 countsByYear W20172391102021 @default.
- W2017239110 countsByYear W20172391102022 @default.
- W2017239110 countsByYear W20172391102023 @default.
- W2017239110 crossrefType "journal-article" @default.
- W2017239110 hasAuthorship W2017239110A5064156879 @default.
- W2017239110 hasConcept C111368507 @default.
- W2017239110 hasConcept C112401455 @default.
- W2017239110 hasConcept C121332964 @default.
- W2017239110 hasConcept C127313418 @default.
- W2017239110 hasConcept C1276947 @default.
- W2017239110 hasConcept C164602753 @default.
- W2017239110 hasConcept C173209714 @default.
- W2017239110 hasConcept C178635117 @default.
- W2017239110 hasConcept C182748727 @default.
- W2017239110 hasConcept C196558001 @default.
- W2017239110 hasConcept C2778517922 @default.
- W2017239110 hasConcept C3017618536 @default.
- W2017239110 hasConcept C38652104 @default.
- W2017239110 hasConcept C41008148 @default.
- W2017239110 hasConcept C56739046 @default.
- W2017239110 hasConcept C57879066 @default.
- W2017239110 hasConcept C62520636 @default.
- W2017239110 hasConcept C69357855 @default.
- W2017239110 hasConcept C72422203 @default.
- W2017239110 hasConcept C74650414 @default.
- W2017239110 hasConcept C97355855 @default.
- W2017239110 hasConcept C99987037 @default.
- W2017239110 hasConceptScore W2017239110C111368507 @default.
- W2017239110 hasConceptScore W2017239110C112401455 @default.
- W2017239110 hasConceptScore W2017239110C121332964 @default.
- W2017239110 hasConceptScore W2017239110C127313418 @default.
- W2017239110 hasConceptScore W2017239110C1276947 @default.
- W2017239110 hasConceptScore W2017239110C164602753 @default.
- W2017239110 hasConceptScore W2017239110C173209714 @default.
- W2017239110 hasConceptScore W2017239110C178635117 @default.
- W2017239110 hasConceptScore W2017239110C182748727 @default.
- W2017239110 hasConceptScore W2017239110C196558001 @default.
- W2017239110 hasConceptScore W2017239110C2778517922 @default.
- W2017239110 hasConceptScore W2017239110C3017618536 @default.
- W2017239110 hasConceptScore W2017239110C38652104 @default.
- W2017239110 hasConceptScore W2017239110C41008148 @default.
- W2017239110 hasConceptScore W2017239110C56739046 @default.
- W2017239110 hasConceptScore W2017239110C57879066 @default.
- W2017239110 hasConceptScore W2017239110C62520636 @default.
- W2017239110 hasConceptScore W2017239110C69357855 @default.
- W2017239110 hasConceptScore W2017239110C72422203 @default.
- W2017239110 hasConceptScore W2017239110C74650414 @default.
- W2017239110 hasConceptScore W2017239110C97355855 @default.
- W2017239110 hasConceptScore W2017239110C99987037 @default.
- W2017239110 hasLocation W20172391101 @default.
- W2017239110 hasOpenAccess W2017239110 @default.
- W2017239110 hasPrimaryLocation W20172391101 @default.
- W2017239110 hasRelatedWork W188592648 @default.
- W2017239110 hasRelatedWork W2041974426 @default.
- W2017239110 hasRelatedWork W2061486606 @default.
- W2017239110 hasRelatedWork W2079104808 @default.
- W2017239110 hasRelatedWork W2601222103 @default.
- W2017239110 hasRelatedWork W2631762445 @default.
- W2017239110 hasRelatedWork W2705267754 @default.
- W2017239110 hasRelatedWork W2950611306 @default.
- W2017239110 hasRelatedWork W2953535663 @default.
- W2017239110 hasRelatedWork W3148736452 @default.
- W2017239110 hasVolume "119" @default.
- W2017239110 isParatext "false" @default.
- W2017239110 isRetracted "false" @default.
- W2017239110 magId "2017239110" @default.
- W2017239110 workType "article" @default.