Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017248058> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2017248058 abstract "Gene expression profiles have been used to predict cancer recurrence or other clinical outcomes of cancer patients. However, clinical information of cancer patients is often incomplete, which yields many unlabeled samples that cannot be used in supervised learning. In this is paper, we develop a novel semi-supervised leaning (SSL) method that uses both labeled and unlabeled patient samples to predict cancer recurrence. Our new SSL algorithm employs a sparse representation approach where a labeled sample is represented as a combination of a small number of properly chosen unlabeled samples. Experiments with a set of gene expression data from patients with colorectal cancer(CRC) demonstrate that our SSL algorithm can improve prediction accuracy compared to other two SSL methods including TSVM and T3VM, and the traditional support vector machine." @default.
- W2017248058 created "2016-06-24" @default.
- W2017248058 creator A5027995560 @default.
- W2017248058 creator A5056621437 @default.
- W2017248058 creator A5058769847 @default.
- W2017248058 date "2013-11-01" @default.
- W2017248058 modified "2023-10-16" @default.
- W2017248058 title "Semi-supervised classification using sparse representation for cancer recurrence prediction" @default.
- W2017248058 cites W1479807131 @default.
- W2017248058 cites W1997029057 @default.
- W2017248058 cites W2018116321 @default.
- W2017248058 cites W2028236537 @default.
- W2017248058 cites W2043825204 @default.
- W2017248058 cites W2049633694 @default.
- W2017248058 cites W2057559260 @default.
- W2017248058 cites W2097255042 @default.
- W2017248058 cites W2097360283 @default.
- W2017248058 cites W2107008379 @default.
- W2017248058 cites W2110437031 @default.
- W2017248058 cites W2122565017 @default.
- W2017248058 cites W2129812935 @default.
- W2017248058 cites W2131994307 @default.
- W2017248058 cites W2135046866 @default.
- W2017248058 cites W2148131511 @default.
- W2017248058 cites W2151801481 @default.
- W2017248058 doi "https://doi.org/10.1109/gensips.2013.6735949" @default.
- W2017248058 hasPublicationYear "2013" @default.
- W2017248058 type Work @default.
- W2017248058 sameAs 2017248058 @default.
- W2017248058 citedByCount "5" @default.
- W2017248058 countsByYear W20172480582016 @default.
- W2017248058 countsByYear W20172480582019 @default.
- W2017248058 countsByYear W20172480582022 @default.
- W2017248058 crossrefType "proceedings-article" @default.
- W2017248058 hasAuthorship W2017248058A5027995560 @default.
- W2017248058 hasAuthorship W2017248058A5056621437 @default.
- W2017248058 hasAuthorship W2017248058A5058769847 @default.
- W2017248058 hasConcept C119857082 @default.
- W2017248058 hasConcept C121608353 @default.
- W2017248058 hasConcept C12267149 @default.
- W2017248058 hasConcept C124066611 @default.
- W2017248058 hasConcept C126322002 @default.
- W2017248058 hasConcept C153180895 @default.
- W2017248058 hasConcept C154945302 @default.
- W2017248058 hasConcept C177264268 @default.
- W2017248058 hasConcept C17744445 @default.
- W2017248058 hasConcept C199360897 @default.
- W2017248058 hasConcept C199539241 @default.
- W2017248058 hasConcept C2776145971 @default.
- W2017248058 hasConcept C2776359362 @default.
- W2017248058 hasConcept C41008148 @default.
- W2017248058 hasConcept C58489278 @default.
- W2017248058 hasConcept C71924100 @default.
- W2017248058 hasConcept C94625758 @default.
- W2017248058 hasConceptScore W2017248058C119857082 @default.
- W2017248058 hasConceptScore W2017248058C121608353 @default.
- W2017248058 hasConceptScore W2017248058C12267149 @default.
- W2017248058 hasConceptScore W2017248058C124066611 @default.
- W2017248058 hasConceptScore W2017248058C126322002 @default.
- W2017248058 hasConceptScore W2017248058C153180895 @default.
- W2017248058 hasConceptScore W2017248058C154945302 @default.
- W2017248058 hasConceptScore W2017248058C177264268 @default.
- W2017248058 hasConceptScore W2017248058C17744445 @default.
- W2017248058 hasConceptScore W2017248058C199360897 @default.
- W2017248058 hasConceptScore W2017248058C199539241 @default.
- W2017248058 hasConceptScore W2017248058C2776145971 @default.
- W2017248058 hasConceptScore W2017248058C2776359362 @default.
- W2017248058 hasConceptScore W2017248058C41008148 @default.
- W2017248058 hasConceptScore W2017248058C58489278 @default.
- W2017248058 hasConceptScore W2017248058C71924100 @default.
- W2017248058 hasConceptScore W2017248058C94625758 @default.
- W2017248058 hasLocation W20172480581 @default.
- W2017248058 hasOpenAccess W2017248058 @default.
- W2017248058 hasPrimaryLocation W20172480581 @default.
- W2017248058 hasRelatedWork W2041399278 @default.
- W2017248058 hasRelatedWork W2099369243 @default.
- W2017248058 hasRelatedWork W2120008580 @default.
- W2017248058 hasRelatedWork W2136184105 @default.
- W2017248058 hasRelatedWork W2163073107 @default.
- W2017248058 hasRelatedWork W3194539120 @default.
- W2017248058 hasRelatedWork W4205958290 @default.
- W2017248058 hasRelatedWork W4223656335 @default.
- W2017248058 hasRelatedWork W2187500075 @default.
- W2017248058 hasRelatedWork W2345184372 @default.
- W2017248058 isParatext "false" @default.
- W2017248058 isRetracted "false" @default.
- W2017248058 magId "2017248058" @default.
- W2017248058 workType "article" @default.