Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017248899> ?p ?o ?g. }
- W2017248899 endingPage "e1000108" @default.
- W2017248899 startingPage "e1000108" @default.
- W2017248899 abstract "Networks play a crucial role in computational biology, yet their analysis and representation is still an open problem. Power Graph Analysis is a lossless transformation of biological networks into a compact, less redundant representation, exploiting the abundance of cliques and bicliques as elementary topological motifs. We demonstrate with five examples the advantages of Power Graph Analysis. Investigating protein-protein interaction networks, we show how the catalytic subunits of the casein kinase II complex are distinguishable from the regulatory subunits, how interaction profiles and sequence phylogeny of SH3 domains correlate, and how false positive interactions among high-throughput interactions are spotted. Additionally, we demonstrate the generality of Power Graph Analysis by applying it to two other types of networks. We show how power graphs induce a clustering of both transcription factors and target genes in bipartite transcription networks, and how the erosion of a phosphatase domain in type 22 non-receptor tyrosine phosphatases is detected. We apply Power Graph Analysis to high-throughput protein interaction networks and show that up to 85% (56% on average) of the information is redundant. Experimental networks are more compressible than rewired ones of same degree distribution, indicating that experimental networks are rich in cliques and bicliques. Power Graphs are a novel representation of networks, which reduces network complexity by explicitly representing re-occurring network motifs. Power Graphs compress up to 85% of the edges in protein interaction networks and are applicable to all types of networks such as protein interactions, regulatory networks, or homology networks." @default.
- W2017248899 created "2016-06-24" @default.
- W2017248899 creator A5004862193 @default.
- W2017248899 creator A5016411406 @default.
- W2017248899 creator A5028142166 @default.
- W2017248899 creator A5043933183 @default.
- W2017248899 date "2008-07-11" @default.
- W2017248899 modified "2023-10-13" @default.
- W2017248899 title "Unraveling Protein Networks with Power Graph Analysis" @default.
- W2017248899 cites W1560366047 @default.
- W2017248899 cites W1575542444 @default.
- W2017248899 cites W1911724401 @default.
- W2017248899 cites W1918391659 @default.
- W2017248899 cites W1963646848 @default.
- W2017248899 cites W1965765506 @default.
- W2017248899 cites W1967490380 @default.
- W2017248899 cites W1970350442 @default.
- W2017248899 cites W1977186059 @default.
- W2017248899 cites W1980800453 @default.
- W2017248899 cites W1989684700 @default.
- W2017248899 cites W1992992274 @default.
- W2017248899 cites W1993246806 @default.
- W2017248899 cites W1994803330 @default.
- W2017248899 cites W1995452806 @default.
- W2017248899 cites W2000763343 @default.
- W2017248899 cites W2008620264 @default.
- W2017248899 cites W2010577059 @default.
- W2017248899 cites W2014719716 @default.
- W2017248899 cites W2019593593 @default.
- W2017248899 cites W2023208820 @default.
- W2017248899 cites W2025029496 @default.
- W2017248899 cites W2037433020 @default.
- W2017248899 cites W2038012561 @default.
- W2017248899 cites W2040411864 @default.
- W2017248899 cites W2040941311 @default.
- W2017248899 cites W2045131140 @default.
- W2017248899 cites W2048596679 @default.
- W2017248899 cites W2050721857 @default.
- W2017248899 cites W2057680921 @default.
- W2017248899 cites W2066235893 @default.
- W2017248899 cites W2083752219 @default.
- W2017248899 cites W2085674480 @default.
- W2017248899 cites W2092247630 @default.
- W2017248899 cites W2095910716 @default.
- W2017248899 cites W2098370509 @default.
- W2017248899 cites W2100990314 @default.
- W2017248899 cites W2101181377 @default.
- W2017248899 cites W2102155970 @default.
- W2017248899 cites W2104315543 @default.
- W2017248899 cites W2104682909 @default.
- W2017248899 cites W2107811186 @default.
- W2017248899 cites W2113019448 @default.
- W2017248899 cites W2114030927 @default.
- W2017248899 cites W2114374137 @default.
- W2017248899 cites W2116117181 @default.
- W2017248899 cites W2117035344 @default.
- W2017248899 cites W2121470019 @default.
- W2017248899 cites W2126602684 @default.
- W2017248899 cites W2128036243 @default.
- W2017248899 cites W2130863229 @default.
- W2017248899 cites W2131094547 @default.
- W2017248899 cites W2131776775 @default.
- W2017248899 cites W2133294187 @default.
- W2017248899 cites W2135597753 @default.
- W2017248899 cites W2136850043 @default.
- W2017248899 cites W2137012036 @default.
- W2017248899 cites W2137104501 @default.
- W2017248899 cites W2137683543 @default.
- W2017248899 cites W2138003801 @default.
- W2017248899 cites W2139548742 @default.
- W2017248899 cites W2142798246 @default.
- W2017248899 cites W2143693270 @default.
- W2017248899 cites W2145889895 @default.
- W2017248899 cites W2148762636 @default.
- W2017248899 cites W2150926065 @default.
- W2017248899 cites W2152869198 @default.
- W2017248899 cites W2153577994 @default.
- W2017248899 cites W2153624566 @default.
- W2017248899 cites W2156737316 @default.
- W2017248899 cites W2159675211 @default.
- W2017248899 cites W2161574105 @default.
- W2017248899 cites W2166085889 @default.
- W2017248899 cites W2166558964 @default.
- W2017248899 cites W2167869241 @default.
- W2017248899 cites W2334138522 @default.
- W2017248899 cites W4238387639 @default.
- W2017248899 doi "https://doi.org/10.1371/journal.pcbi.1000108" @default.
- W2017248899 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2424176" @default.
- W2017248899 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18617988" @default.
- W2017248899 hasPublicationYear "2008" @default.
- W2017248899 type Work @default.
- W2017248899 sameAs 2017248899 @default.
- W2017248899 citedByCount "113" @default.
- W2017248899 countsByYear W20172488992012 @default.
- W2017248899 countsByYear W20172488992013 @default.
- W2017248899 countsByYear W20172488992014 @default.
- W2017248899 countsByYear W20172488992015 @default.
- W2017248899 countsByYear W20172488992016 @default.