Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017261637> ?p ?o ?g. }
- W2017261637 endingPage "194" @default.
- W2017261637 startingPage "186" @default.
- W2017261637 abstract "In this paper, artifact removal from biomedical signals is addressed. We particularly focus on removing ballistocardiogram (BCG) artifact from EEG. BCG mainly appears in EEG signals during simultaneous EEG–fMRI recordings. Different from most existing artifact removal techniques, we propose a method based on dictionary learning framework. Due to strength of sparsifying dictionaries in applications such as image denoising, it is expected to succeed in BCG removal task as well. This is investigated in the proposed approach where a dictionary is learned from original EEG recording. The dictionary is designed to locally model BCG characteristics. After achieving the dictionary, BCG can be simply subtracted from the original signal and the clean EEG is obtained. Our experimental results on both synthetic and real data confirm the effectiveness of the proposed method. The results reveal the flexibility of learned dictionary for modeling the fluctuations in artifact, and removing it from original EEG signals." @default.
- W2017261637 created "2016-06-24" @default.
- W2017261637 creator A5010489255 @default.
- W2017261637 creator A5024631330 @default.
- W2017261637 date "2015-04-01" @default.
- W2017261637 modified "2023-09-26" @default.
- W2017261637 title "EEG–fMRI: Dictionary learning for removal of ballistocardiogram artifact from EEG" @default.
- W2017261637 cites W1963590300 @default.
- W2017261637 cites W1965306506 @default.
- W2017261637 cites W1977125781 @default.
- W2017261637 cites W1982199708 @default.
- W2017261637 cites W1985638499 @default.
- W2017261637 cites W1986931325 @default.
- W2017261637 cites W1987469773 @default.
- W2017261637 cites W2002027021 @default.
- W2017261637 cites W2027833183 @default.
- W2017261637 cites W2052035564 @default.
- W2017261637 cites W2058408209 @default.
- W2017261637 cites W2058612970 @default.
- W2017261637 cites W2063387614 @default.
- W2017261637 cites W2064658196 @default.
- W2017261637 cites W2081018290 @default.
- W2017261637 cites W2087115365 @default.
- W2017261637 cites W2094121226 @default.
- W2017261637 cites W2101675075 @default.
- W2017261637 cites W2105464873 @default.
- W2017261637 cites W2109466860 @default.
- W2017261637 cites W2109535921 @default.
- W2017261637 cites W2115261698 @default.
- W2017261637 cites W2116308679 @default.
- W2017261637 cites W2120698894 @default.
- W2017261637 cites W2127271355 @default.
- W2017261637 cites W2136847592 @default.
- W2017261637 cites W2148821883 @default.
- W2017261637 cites W2153663612 @default.
- W2017261637 cites W2153755339 @default.
- W2017261637 cites W2158325827 @default.
- W2017261637 cites W2160547390 @default.
- W2017261637 cites W2163254535 @default.
- W2017261637 cites W2164516042 @default.
- W2017261637 cites W2168496191 @default.
- W2017261637 cites W2170280958 @default.
- W2017261637 doi "https://doi.org/10.1016/j.bspc.2015.01.001" @default.
- W2017261637 hasPublicationYear "2015" @default.
- W2017261637 type Work @default.
- W2017261637 sameAs 2017261637 @default.
- W2017261637 citedByCount "16" @default.
- W2017261637 countsByYear W20172616372015 @default.
- W2017261637 countsByYear W20172616372016 @default.
- W2017261637 countsByYear W20172616372017 @default.
- W2017261637 countsByYear W20172616372018 @default.
- W2017261637 countsByYear W20172616372020 @default.
- W2017261637 countsByYear W20172616372021 @default.
- W2017261637 countsByYear W20172616372022 @default.
- W2017261637 crossrefType "journal-article" @default.
- W2017261637 hasAuthorship W2017261637A5010489255 @default.
- W2017261637 hasAuthorship W2017261637A5024631330 @default.
- W2017261637 hasConcept C105795698 @default.
- W2017261637 hasConcept C115961682 @default.
- W2017261637 hasConcept C153180895 @default.
- W2017261637 hasConcept C154945302 @default.
- W2017261637 hasConcept C15744967 @default.
- W2017261637 hasConcept C163294075 @default.
- W2017261637 hasConcept C169760540 @default.
- W2017261637 hasConcept C199360897 @default.
- W2017261637 hasConcept C2779010991 @default.
- W2017261637 hasConcept C2779843651 @default.
- W2017261637 hasConcept C2780598303 @default.
- W2017261637 hasConcept C28490314 @default.
- W2017261637 hasConcept C2988886741 @default.
- W2017261637 hasConcept C33923547 @default.
- W2017261637 hasConcept C41008148 @default.
- W2017261637 hasConcept C522805319 @default.
- W2017261637 hasConceptScore W2017261637C105795698 @default.
- W2017261637 hasConceptScore W2017261637C115961682 @default.
- W2017261637 hasConceptScore W2017261637C153180895 @default.
- W2017261637 hasConceptScore W2017261637C154945302 @default.
- W2017261637 hasConceptScore W2017261637C15744967 @default.
- W2017261637 hasConceptScore W2017261637C163294075 @default.
- W2017261637 hasConceptScore W2017261637C169760540 @default.
- W2017261637 hasConceptScore W2017261637C199360897 @default.
- W2017261637 hasConceptScore W2017261637C2779010991 @default.
- W2017261637 hasConceptScore W2017261637C2779843651 @default.
- W2017261637 hasConceptScore W2017261637C2780598303 @default.
- W2017261637 hasConceptScore W2017261637C28490314 @default.
- W2017261637 hasConceptScore W2017261637C2988886741 @default.
- W2017261637 hasConceptScore W2017261637C33923547 @default.
- W2017261637 hasConceptScore W2017261637C41008148 @default.
- W2017261637 hasConceptScore W2017261637C522805319 @default.
- W2017261637 hasLocation W20172616371 @default.
- W2017261637 hasOpenAccess W2017261637 @default.
- W2017261637 hasPrimaryLocation W20172616371 @default.
- W2017261637 hasRelatedWork W1972973734 @default.
- W2017261637 hasRelatedWork W2017261637 @default.
- W2017261637 hasRelatedWork W2025676348 @default.
- W2017261637 hasRelatedWork W3011201337 @default.
- W2017261637 hasRelatedWork W3151588047 @default.
- W2017261637 hasRelatedWork W3153965199 @default.