Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017264939> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2017264939 abstract "High utility sequential pattern mining is an emerging topic in the data mining community. Compared to the classic frequent sequence mining, the utility framework provides more informative and actionable knowledge since the utility of a sequence indicates business value and impact. However, the introduction of utility makes the problem fundamentally different from the frequency-based pattern mining framework and brings about dramatic challenges. Although the existing high utility sequential pattern mining algorithms can discover all the patterns satisfying a given minimum utility, it is often difficult for users to set a proper minimum utility. A too small value may produce thousands of patterns, whereas a too big one may lead to no findings. In this paper, we propose a novel framework called top-k high utility sequential pattern mining to tackle this critical problem. Accordingly, an efficient algorithm, Top-k high Utility Sequence (TUS for short) mining, is designed to identify top-k high utility sequential patterns without minimum utility. In addition, three effective features are introduced to handle the efficiency problem, including two strategies for raising the threshold and one pruning for filtering unpromising items. Our experiments are conducted on both synthetic and real datasets. The results show that TUS incorporating the efficiency-enhanced strategies demonstrates impressive performance without missing any high utility sequential patterns." @default.
- W2017264939 created "2016-06-24" @default.
- W2017264939 creator A5000798681 @default.
- W2017264939 creator A5003799076 @default.
- W2017264939 creator A5034162160 @default.
- W2017264939 creator A5053701170 @default.
- W2017264939 creator A5089204392 @default.
- W2017264939 date "2013-12-01" @default.
- W2017264939 modified "2023-09-27" @default.
- W2017264939 title "Efficiently Mining Top-K High Utility Sequential Patterns" @default.
- W2017264939 cites W1608194207 @default.
- W2017264939 cites W2002263433 @default.
- W2017264939 cites W2106541455 @default.
- W2017264939 cites W2129836922 @default.
- W2017264939 cites W2151028259 @default.
- W2017264939 cites W2157169143 @default.
- W2017264939 cites W2158454296 @default.
- W2017264939 cites W2161637667 @default.
- W2017264939 cites W2538303219 @default.
- W2017264939 cites W653158751 @default.
- W2017264939 doi "https://doi.org/10.1109/icdm.2013.148" @default.
- W2017264939 hasPublicationYear "2013" @default.
- W2017264939 type Work @default.
- W2017264939 sameAs 2017264939 @default.
- W2017264939 citedByCount "65" @default.
- W2017264939 countsByYear W20172649392014 @default.
- W2017264939 countsByYear W20172649392015 @default.
- W2017264939 countsByYear W20172649392016 @default.
- W2017264939 countsByYear W20172649392017 @default.
- W2017264939 countsByYear W20172649392018 @default.
- W2017264939 countsByYear W20172649392019 @default.
- W2017264939 countsByYear W20172649392020 @default.
- W2017264939 countsByYear W20172649392021 @default.
- W2017264939 countsByYear W20172649392022 @default.
- W2017264939 countsByYear W20172649392023 @default.
- W2017264939 crossrefType "proceedings-article" @default.
- W2017264939 hasAuthorship W2017264939A5000798681 @default.
- W2017264939 hasAuthorship W2017264939A5003799076 @default.
- W2017264939 hasAuthorship W2017264939A5034162160 @default.
- W2017264939 hasAuthorship W2017264939A5053701170 @default.
- W2017264939 hasAuthorship W2017264939A5089204392 @default.
- W2017264939 hasConcept C108010975 @default.
- W2017264939 hasConcept C119857082 @default.
- W2017264939 hasConcept C124101348 @default.
- W2017264939 hasConcept C149490388 @default.
- W2017264939 hasConcept C154945302 @default.
- W2017264939 hasConcept C177264268 @default.
- W2017264939 hasConcept C199360897 @default.
- W2017264939 hasConcept C2776291640 @default.
- W2017264939 hasConcept C2778112365 @default.
- W2017264939 hasConcept C41008148 @default.
- W2017264939 hasConcept C54355233 @default.
- W2017264939 hasConcept C6557445 @default.
- W2017264939 hasConcept C86803240 @default.
- W2017264939 hasConceptScore W2017264939C108010975 @default.
- W2017264939 hasConceptScore W2017264939C119857082 @default.
- W2017264939 hasConceptScore W2017264939C124101348 @default.
- W2017264939 hasConceptScore W2017264939C149490388 @default.
- W2017264939 hasConceptScore W2017264939C154945302 @default.
- W2017264939 hasConceptScore W2017264939C177264268 @default.
- W2017264939 hasConceptScore W2017264939C199360897 @default.
- W2017264939 hasConceptScore W2017264939C2776291640 @default.
- W2017264939 hasConceptScore W2017264939C2778112365 @default.
- W2017264939 hasConceptScore W2017264939C41008148 @default.
- W2017264939 hasConceptScore W2017264939C54355233 @default.
- W2017264939 hasConceptScore W2017264939C6557445 @default.
- W2017264939 hasConceptScore W2017264939C86803240 @default.
- W2017264939 hasLocation W20172649391 @default.
- W2017264939 hasOpenAccess W2017264939 @default.
- W2017264939 hasPrimaryLocation W20172649391 @default.
- W2017264939 hasRelatedWork W1968592943 @default.
- W2017264939 hasRelatedWork W2046046779 @default.
- W2017264939 hasRelatedWork W2138513411 @default.
- W2017264939 hasRelatedWork W2353468268 @default.
- W2017264939 hasRelatedWork W2360627962 @default.
- W2017264939 hasRelatedWork W2362264899 @default.
- W2017264939 hasRelatedWork W2373673987 @default.
- W2017264939 hasRelatedWork W2386695831 @default.
- W2017264939 hasRelatedWork W2884289887 @default.
- W2017264939 hasRelatedWork W4226373478 @default.
- W2017264939 isParatext "false" @default.
- W2017264939 isRetracted "false" @default.
- W2017264939 magId "2017264939" @default.
- W2017264939 workType "article" @default.