Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017272806> ?p ?o ?g. }
- W2017272806 endingPage "12822" @default.
- W2017272806 startingPage "12807" @default.
- W2017272806 abstract "The ever-increasing worldwide demand for energy has led to the upgrading of heavy crude oil and asphaltene-rich feedstocks becoming viable refining options for the petroleum industry. Traditional problems associated with these feedstocks, particularly stable water-in-petroleum emulsions, are drawing increasing attention. Despite considerable research on the interfacial assembly of asphaltenes, resins, and naphthenic acids, much about the resulting interfacial films is not well understood. Here, we describe the use of small-angle neutron scattering (SANS) to elucidate interfacial film properties from model emulsion systems. Modeling the SANS data with both a polydisperse core/shell form factor as well as a thin sheet approximation, we have deduced the film thickness and the asphaltenic composition within the stabilizing interfacial films of water-in-model oil emulsions prepared in toluene, decalin, and 1-methylnaphthalene. Film thicknesses were found to be 100-110 A with little deviation among the three solvents. By contrast, asphaltene composition in the film varied significantly, with decalin leading to the most asphaltene-rich films (30% by volume of the film), while emulsions made in toluene and methylnaphthalene resulted in lower asphaltenic contents (12-15%). Through centrifugation and dilatational rheology, we found that trends of decreasing water resolution (i.e., increasing emulsion stability) and increasing long-time dilatational elasticity corresponded with increasing asphaltene composition in the film. In addition to the asphaltenic composition of the films, here we also deduce the film solvent and water content. Our analyses indicate that 1:1 (O/W) emulsions prepared with 3% (w/w) asphaltenes in toluene and 1 wt % NaCl aqueous solutions at pH 7 and pH 10 resulted in 80-90 A thick films, interfacial areas around 2600-3100 cm (2)/mL, and films that were roughly 25% (v/v) asphaltenic, 60-70% toluene, and 8-12% water. The increased asphaltene and water film composition at pH 10 versus pH 7, along with unique dynamic interfacial tension profiles, suggested that the protonation state of carboxylic moieties within asphaltenes impacts the final film properties. This was further supported when we characterized similar asphaltenic emulsions that also contained 9-anthracence carboxylic acid (ACA). Addition of this aromatic acid led to slightly thinner films (70-80 A) that were characteristically more aqueous (up to 20% by volume) and 5-6% (v/v) ACA. This unique in situ characterization (deduced entirely from SANS data from emulsion samples) of the entire film composition calls for further investigation regarding the role this film-based water plays in emulsion stability." @default.
- W2017272806 created "2016-06-24" @default.
- W2017272806 creator A5081524836 @default.
- W2017272806 creator A5091678341 @default.
- W2017272806 date "2008-10-24" @default.
- W2017272806 modified "2023-10-18" @default.
- W2017272806 title "Water-in-Model Oil Emulsions Studied by Small-Angle Neutron Scattering: Interfacial Film Thickness and Composition" @default.
- W2017272806 cites W115351706 @default.
- W2017272806 cites W1964902305 @default.
- W2017272806 cites W1967467339 @default.
- W2017272806 cites W1968617107 @default.
- W2017272806 cites W1970182934 @default.
- W2017272806 cites W1970755955 @default.
- W2017272806 cites W1971943722 @default.
- W2017272806 cites W1974955642 @default.
- W2017272806 cites W1975112244 @default.
- W2017272806 cites W1975645876 @default.
- W2017272806 cites W1978549788 @default.
- W2017272806 cites W1978836308 @default.
- W2017272806 cites W1979123588 @default.
- W2017272806 cites W1979685798 @default.
- W2017272806 cites W1983876837 @default.
- W2017272806 cites W1984176634 @default.
- W2017272806 cites W1985641759 @default.
- W2017272806 cites W1990249109 @default.
- W2017272806 cites W1992051902 @default.
- W2017272806 cites W1994197757 @default.
- W2017272806 cites W1994347998 @default.
- W2017272806 cites W1996335203 @default.
- W2017272806 cites W2000562371 @default.
- W2017272806 cites W2000967807 @default.
- W2017272806 cites W2001086509 @default.
- W2017272806 cites W2001603298 @default.
- W2017272806 cites W2002880903 @default.
- W2017272806 cites W2002934067 @default.
- W2017272806 cites W2007157621 @default.
- W2017272806 cites W2007563077 @default.
- W2017272806 cites W2008995012 @default.
- W2017272806 cites W2009026934 @default.
- W2017272806 cites W2010067107 @default.
- W2017272806 cites W2010601047 @default.
- W2017272806 cites W2014816106 @default.
- W2017272806 cites W2018465981 @default.
- W2017272806 cites W2018958684 @default.
- W2017272806 cites W2020678178 @default.
- W2017272806 cites W2021289735 @default.
- W2017272806 cites W2022589044 @default.
- W2017272806 cites W2023379929 @default.
- W2017272806 cites W2024205305 @default.
- W2017272806 cites W2025234953 @default.
- W2017272806 cites W2027403019 @default.
- W2017272806 cites W2028711207 @default.
- W2017272806 cites W2031694660 @default.
- W2017272806 cites W2032475886 @default.
- W2017272806 cites W2045682555 @default.
- W2017272806 cites W2049723241 @default.
- W2017272806 cites W2050098804 @default.
- W2017272806 cites W2050133026 @default.
- W2017272806 cites W2051322276 @default.
- W2017272806 cites W2051635410 @default.
- W2017272806 cites W2054665762 @default.
- W2017272806 cites W2055089331 @default.
- W2017272806 cites W2062525698 @default.
- W2017272806 cites W2067577467 @default.
- W2017272806 cites W2068755165 @default.
- W2017272806 cites W2071434257 @default.
- W2017272806 cites W2072477301 @default.
- W2017272806 cites W2072884847 @default.
- W2017272806 cites W2073682312 @default.
- W2017272806 cites W2076423947 @default.
- W2017272806 cites W2079982466 @default.
- W2017272806 cites W2080352556 @default.
- W2017272806 cites W2080593839 @default.
- W2017272806 cites W2082864383 @default.
- W2017272806 cites W2088079419 @default.
- W2017272806 cites W2090793515 @default.
- W2017272806 cites W2091158260 @default.
- W2017272806 cites W2093064302 @default.
- W2017272806 cites W2094559255 @default.
- W2017272806 cites W2095451145 @default.
- W2017272806 cites W2122676372 @default.
- W2017272806 cites W2155470252 @default.
- W2017272806 cites W2158640786 @default.
- W2017272806 cites W2159517788 @default.
- W2017272806 cites W2161868816 @default.
- W2017272806 cites W2218232672 @default.
- W2017272806 cites W318616184 @default.
- W2017272806 doi "https://doi.org/10.1021/la802095m" @default.
- W2017272806 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18947210" @default.
- W2017272806 hasPublicationYear "2008" @default.
- W2017272806 type Work @default.
- W2017272806 sameAs 2017272806 @default.
- W2017272806 citedByCount "67" @default.
- W2017272806 countsByYear W20172728062012 @default.
- W2017272806 countsByYear W20172728062013 @default.
- W2017272806 countsByYear W20172728062014 @default.
- W2017272806 countsByYear W20172728062015 @default.
- W2017272806 countsByYear W20172728062016 @default.