Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017294870> ?p ?o ?g. }
- W2017294870 endingPage "229" @default.
- W2017294870 startingPage "220" @default.
- W2017294870 abstract "The transition to digital radiology has provided new opportunities for improved image quality, made possible by the superior detective quantum efficiency and post-processing capabilities of new imaging systems, and advanced imaging applications, made possible by rapid digital image acquisition. However, this transition has taken place largely without optimising the radiographic technique used to acquire the images. This paper proposes a framework for optimising the acquisition of digital X-ray images. The proposed approach is based on the signal and noise characteristics of the digital images and the applied exposure. Signal is defined, based on the clinical task involved in an imaging application, as the difference between the detector signal with and without a target present against a representative background. Noise is determined from the noise properties of uniformly acquired images of the background, taking into consideration the absorption properties of the detector. Incident exposure is estimated or otherwise measured free in air, and converted to dose. The main figure of merit (FOM) for optimisation is defined as the signal-difference-to-noise ratio (SdNR) squared per unit exposure or (more preferably) dose. This paper highlights three specific technique optimisation studies that used this approach to optimise the radiographic technique for digital chest and breast applications. In the first study, which was focused on chest radiography with a CsI flat-panel detector, a range of kV(p) (50-150) and filtration (Z = 13-82) were examined in terms of their associated FOM as well as soft tissue to bone contrast, a factor of importance in digital chest radiography. The results indicated that additive Cu filtration can improve image quality. A second study in digital mammography using a selenium direct flat-panel detector indicated improved SdNR per unit exposure with the use of a tungsten target and a rhodium filter than conventional molybdenum target/molybdenum filter techniques. Finally, a third study focusing on cone-beam computed tomography of the breast using a CsI flat-panel detector indicated that high Z filtration of a tungsten target X-ray beam can notably improve the signal and noise characteristics of the image. The general findings highlight the fact that the techniques that are conventionally assumed to be optimum may need to be revisited for digital radiography." @default.
- W2017294870 created "2016-06-24" @default.
- W2017294870 creator A5021555712 @default.
- W2017294870 creator A5040192736 @default.
- W2017294870 creator A5063504784 @default.
- W2017294870 creator A5078122144 @default.
- W2017294870 date "2005-05-17" @default.
- W2017294870 modified "2023-10-16" @default.
- W2017294870 title "A framework for optimising the radiographic technique in digital X-ray imaging" @default.
- W2017294870 cites W1980795958 @default.
- W2017294870 cites W1984634678 @default.
- W2017294870 cites W1985325052 @default.
- W2017294870 cites W2005638834 @default.
- W2017294870 cites W2016436561 @default.
- W2017294870 cites W2039444883 @default.
- W2017294870 cites W2046877085 @default.
- W2017294870 cites W2064186316 @default.
- W2017294870 cites W2068445024 @default.
- W2017294870 cites W2088792765 @default.
- W2017294870 cites W2091594052 @default.
- W2017294870 cites W2094498964 @default.
- W2017294870 cites W2123374810 @default.
- W2017294870 cites W2045709756 @default.
- W2017294870 doi "https://doi.org/10.1093/rpd/nch562" @default.
- W2017294870 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15933112" @default.
- W2017294870 hasPublicationYear "2005" @default.
- W2017294870 type Work @default.
- W2017294870 sameAs 2017294870 @default.
- W2017294870 citedByCount "133" @default.
- W2017294870 countsByYear W20172948702012 @default.
- W2017294870 countsByYear W20172948702013 @default.
- W2017294870 countsByYear W20172948702014 @default.
- W2017294870 countsByYear W20172948702015 @default.
- W2017294870 countsByYear W20172948702016 @default.
- W2017294870 countsByYear W20172948702017 @default.
- W2017294870 countsByYear W20172948702018 @default.
- W2017294870 countsByYear W20172948702019 @default.
- W2017294870 countsByYear W20172948702020 @default.
- W2017294870 countsByYear W20172948702021 @default.
- W2017294870 countsByYear W20172948702022 @default.
- W2017294870 countsByYear W20172948702023 @default.
- W2017294870 crossrefType "journal-article" @default.
- W2017294870 hasAuthorship W2017294870A5021555712 @default.
- W2017294870 hasAuthorship W2017294870A5040192736 @default.
- W2017294870 hasAuthorship W2017294870A5063504784 @default.
- W2017294870 hasAuthorship W2017294870A5078122144 @default.
- W2017294870 hasConcept C112416745 @default.
- W2017294870 hasConcept C115961682 @default.
- W2017294870 hasConcept C120665830 @default.
- W2017294870 hasConcept C121332964 @default.
- W2017294870 hasConcept C126838900 @default.
- W2017294870 hasConcept C130277099 @default.
- W2017294870 hasConcept C134093067 @default.
- W2017294870 hasConcept C13944312 @default.
- W2017294870 hasConcept C146108262 @default.
- W2017294870 hasConcept C175231954 @default.
- W2017294870 hasConcept C19527891 @default.
- W2017294870 hasConcept C2781305912 @default.
- W2017294870 hasConcept C31972630 @default.
- W2017294870 hasConcept C36454342 @default.
- W2017294870 hasConcept C41008148 @default.
- W2017294870 hasConcept C42781572 @default.
- W2017294870 hasConcept C55020928 @default.
- W2017294870 hasConcept C71924100 @default.
- W2017294870 hasConcept C76155785 @default.
- W2017294870 hasConcept C86169459 @default.
- W2017294870 hasConcept C9417928 @default.
- W2017294870 hasConcept C94898600 @default.
- W2017294870 hasConcept C94915269 @default.
- W2017294870 hasConcept C99498987 @default.
- W2017294870 hasConceptScore W2017294870C112416745 @default.
- W2017294870 hasConceptScore W2017294870C115961682 @default.
- W2017294870 hasConceptScore W2017294870C120665830 @default.
- W2017294870 hasConceptScore W2017294870C121332964 @default.
- W2017294870 hasConceptScore W2017294870C126838900 @default.
- W2017294870 hasConceptScore W2017294870C130277099 @default.
- W2017294870 hasConceptScore W2017294870C134093067 @default.
- W2017294870 hasConceptScore W2017294870C13944312 @default.
- W2017294870 hasConceptScore W2017294870C146108262 @default.
- W2017294870 hasConceptScore W2017294870C175231954 @default.
- W2017294870 hasConceptScore W2017294870C19527891 @default.
- W2017294870 hasConceptScore W2017294870C2781305912 @default.
- W2017294870 hasConceptScore W2017294870C31972630 @default.
- W2017294870 hasConceptScore W2017294870C36454342 @default.
- W2017294870 hasConceptScore W2017294870C41008148 @default.
- W2017294870 hasConceptScore W2017294870C42781572 @default.
- W2017294870 hasConceptScore W2017294870C55020928 @default.
- W2017294870 hasConceptScore W2017294870C71924100 @default.
- W2017294870 hasConceptScore W2017294870C76155785 @default.
- W2017294870 hasConceptScore W2017294870C86169459 @default.
- W2017294870 hasConceptScore W2017294870C9417928 @default.
- W2017294870 hasConceptScore W2017294870C94898600 @default.
- W2017294870 hasConceptScore W2017294870C94915269 @default.
- W2017294870 hasConceptScore W2017294870C99498987 @default.
- W2017294870 hasIssue "1-3" @default.
- W2017294870 hasLocation W20172948701 @default.
- W2017294870 hasLocation W20172948702 @default.
- W2017294870 hasOpenAccess W2017294870 @default.