Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017295237> ?p ?o ?g. }
- W2017295237 endingPage "e50440" @default.
- W2017295237 startingPage "e50440" @default.
- W2017295237 abstract "This paper demonstrates how multi-scale measures of rugosity, slope and aspect can be derived from fine-scale bathymetric reconstructions created from geo-referenced stereo imagery. We generate three-dimensional reconstructions over large spatial scales using data collected by Autonomous Underwater Vehicles (AUVs), Remotely Operated Vehicles (ROVs), manned submersibles and diver-held imaging systems. We propose a new method for calculating rugosity in a Delaunay triangulated surface mesh by projecting areas onto the plane of best fit using Principal Component Analysis (PCA). Slope and aspect can be calculated with very little extra effort, and fitting a plane serves to decouple rugosity from slope. We compare the results of the virtual terrain complexity calculations with experimental results using conventional in-situ measurement methods. We show that performing calculations over a digital terrain reconstruction is more flexible, robust and easily repeatable. In addition, the method is non-contact and provides much less environmental impact compared to traditional survey techniques. For diver-based surveys, the time underwater needed to collect rugosity data is significantly reduced and, being a technique based on images, it is possible to use robotic platforms that can operate beyond diver depths. Measurements can be calculated exhaustively at multiple scales for surveys with tens of thousands of images covering thousands of square metres. The technique is demonstrated on data gathered by a diver-rig and an AUV, on small single-transect surveys and on a larger, dense survey that covers over [Formula: see text]. Stereo images provide 3D structure as well as visual appearance, which could potentially feed into automated classification techniques. Our multi-scale rugosity, slope and aspect measures have already been adopted in a number of marine science studies. This paper presents a detailed description of the method and thoroughly validates it against traditional in-situ measurements." @default.
- W2017295237 created "2016-06-24" @default.
- W2017295237 creator A5032448563 @default.
- W2017295237 creator A5044131792 @default.
- W2017295237 creator A5068908958 @default.
- W2017295237 creator A5089990642 @default.
- W2017295237 date "2012-12-12" @default.
- W2017295237 modified "2023-10-18" @default.
- W2017295237 title "Multi-Scale Measures of Rugosity, Slope and Aspect from Benthic Stereo Image Reconstructions" @default.
- W2017295237 cites W1969141783 @default.
- W2017295237 cites W1980234610 @default.
- W2017295237 cites W2003256767 @default.
- W2017295237 cites W2022619846 @default.
- W2017295237 cites W2026606690 @default.
- W2017295237 cites W2030747575 @default.
- W2017295237 cites W2049849100 @default.
- W2017295237 cites W2059929763 @default.
- W2017295237 cites W2065704610 @default.
- W2017295237 cites W2073328162 @default.
- W2017295237 cites W2102242738 @default.
- W2017295237 cites W2159391354 @default.
- W2017295237 cites W2163419695 @default.
- W2017295237 cites W2178700827 @default.
- W2017295237 cites W4241266354 @default.
- W2017295237 doi "https://doi.org/10.1371/journal.pone.0050440" @default.
- W2017295237 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3520945" @default.
- W2017295237 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23251370" @default.
- W2017295237 hasPublicationYear "2012" @default.
- W2017295237 type Work @default.
- W2017295237 sameAs 2017295237 @default.
- W2017295237 citedByCount "111" @default.
- W2017295237 countsByYear W20172952372013 @default.
- W2017295237 countsByYear W20172952372014 @default.
- W2017295237 countsByYear W20172952372015 @default.
- W2017295237 countsByYear W20172952372016 @default.
- W2017295237 countsByYear W20172952372017 @default.
- W2017295237 countsByYear W20172952372018 @default.
- W2017295237 countsByYear W20172952372019 @default.
- W2017295237 countsByYear W20172952372020 @default.
- W2017295237 countsByYear W20172952372021 @default.
- W2017295237 countsByYear W20172952372022 @default.
- W2017295237 countsByYear W20172952372023 @default.
- W2017295237 crossrefType "journal-article" @default.
- W2017295237 hasAuthorship W2017295237A5032448563 @default.
- W2017295237 hasAuthorship W2017295237A5044131792 @default.
- W2017295237 hasAuthorship W2017295237A5068908958 @default.
- W2017295237 hasAuthorship W2017295237A5089990642 @default.
- W2017295237 hasBestOaLocation W20172952371 @default.
- W2017295237 hasConcept C111368507 @default.
- W2017295237 hasConcept C11413529 @default.
- W2017295237 hasConcept C121684516 @default.
- W2017295237 hasConcept C127313418 @default.
- W2017295237 hasConcept C145424490 @default.
- W2017295237 hasConcept C154945302 @default.
- W2017295237 hasConcept C161840515 @default.
- W2017295237 hasConcept C174943157 @default.
- W2017295237 hasConcept C185933670 @default.
- W2017295237 hasConcept C18903297 @default.
- W2017295237 hasConcept C19966478 @default.
- W2017295237 hasConcept C205649164 @default.
- W2017295237 hasConcept C2776122016 @default.
- W2017295237 hasConcept C2777177297 @default.
- W2017295237 hasConcept C2778755073 @default.
- W2017295237 hasConcept C31972630 @default.
- W2017295237 hasConcept C41008148 @default.
- W2017295237 hasConcept C58640448 @default.
- W2017295237 hasConcept C62649853 @default.
- W2017295237 hasConcept C68010082 @default.
- W2017295237 hasConcept C86803240 @default.
- W2017295237 hasConcept C90509273 @default.
- W2017295237 hasConcept C98083399 @default.
- W2017295237 hasConceptScore W2017295237C111368507 @default.
- W2017295237 hasConceptScore W2017295237C11413529 @default.
- W2017295237 hasConceptScore W2017295237C121684516 @default.
- W2017295237 hasConceptScore W2017295237C127313418 @default.
- W2017295237 hasConceptScore W2017295237C145424490 @default.
- W2017295237 hasConceptScore W2017295237C154945302 @default.
- W2017295237 hasConceptScore W2017295237C161840515 @default.
- W2017295237 hasConceptScore W2017295237C174943157 @default.
- W2017295237 hasConceptScore W2017295237C185933670 @default.
- W2017295237 hasConceptScore W2017295237C18903297 @default.
- W2017295237 hasConceptScore W2017295237C19966478 @default.
- W2017295237 hasConceptScore W2017295237C205649164 @default.
- W2017295237 hasConceptScore W2017295237C2776122016 @default.
- W2017295237 hasConceptScore W2017295237C2777177297 @default.
- W2017295237 hasConceptScore W2017295237C2778755073 @default.
- W2017295237 hasConceptScore W2017295237C31972630 @default.
- W2017295237 hasConceptScore W2017295237C41008148 @default.
- W2017295237 hasConceptScore W2017295237C58640448 @default.
- W2017295237 hasConceptScore W2017295237C62649853 @default.
- W2017295237 hasConceptScore W2017295237C68010082 @default.
- W2017295237 hasConceptScore W2017295237C86803240 @default.
- W2017295237 hasConceptScore W2017295237C90509273 @default.
- W2017295237 hasConceptScore W2017295237C98083399 @default.
- W2017295237 hasIssue "12" @default.
- W2017295237 hasLocation W20172952371 @default.
- W2017295237 hasLocation W20172952372 @default.
- W2017295237 hasLocation W20172952373 @default.