Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017300497> ?p ?o ?g. }
- W2017300497 endingPage "44" @default.
- W2017300497 startingPage "1" @default.
- W2017300497 abstract "The formation of giant hydrothermal ore bodies is a metasomatic process whereby the influx of heat and of large volumes of fluids results in chemical reactions both within the fluids and between the fluids and the rock mass. The result is the development of relatively large volumes of altered mineral assemblages and relatively small, commonly localised, volumes of valuable minerals. This paper and its sequel treat such hydrothermal mineralising systems as open flow chemical reactors and review the concepts that are pertinent to understanding how such reactors operate to optimise the concentrations of valuable minerals such as sulphides and metals. Non-equilibrium theories of open flow reacting systems are the basis for such optimisation. Contrary to popular fashion in the geosciences it is possible to operate open flow reactors far from equilibrium indefinitely as long as the relevant supply of reactants and energy is fed to the system. Even the simplest of chemical reactions, a first order exothermic reaction, A→B, is unstable and produces a rich variety of relations between reaction rate and the rate of supply of reactants together with oscillations in temperature and chemical composition during the life of the reactor. Such instabilities are enhanced by processes involving autocatalysis and/or heterogeneous reaction kinetics. These instabilities lead to oscillations in temperature, Eh and pH in both space and time and constitute the essential mechanisms responsible for sulphide/metal deposition and for mineral and compositional zonation within the system. Their behaviour is critically dependent on the local permeability. Many alteration reactions are exothermic and are self enhancing whilst the initial alteration proceeds. During such a stage hydrothermal mineralising systems are open exothermic chemical reactors that operate to develop the alteration system, veining and brecciation. The deposition of sulphides, metals and many silicates is an endothermic process that tends to quench the system. The size and grade of a particular mineral deposit is a play-off between these exothermic and endothermic processes and is reflected in the paragenetic sequence and in both the gross and detailed structural evolution of the hydrothermal system. The latter stages of evolution of successful mineral systems are characterised by competition between exothermic and endothermic processes in which the chemical systems are autocatalytic in H+. This competitive behaviour is the hallmark of a successful mineral system. The fundamental roles of extrema entropy production principles are explored to define the evolution and characteristics of hydrothermal systems. In this first paper (Part I) we outline the basic theory behind such processes and concentrate on the coupling between deformation, fluid transport, heat (entropy) production and chemical reactions. In the sequel (Part II) we examine the processes that lead to efficient mixing of fluids and the role that such mixing processes play in enhancing mineral reactions, in controlling their spatial relations and in producing multifractal ore grade distributions." @default.
- W2017300497 created "2016-06-24" @default.
- W2017300497 creator A5012211793 @default.
- W2017300497 creator A5079294829 @default.
- W2017300497 creator A5085144524 @default.
- W2017300497 date "2012-12-01" @default.
- W2017300497 modified "2023-10-06" @default.
- W2017300497 title "The mechanics of hydrothermal systems: I. Ore systems as chemical reactors" @default.
- W2017300497 cites W1510184633 @default.
- W2017300497 cites W1521967082 @default.
- W2017300497 cites W1584703553 @default.
- W2017300497 cites W1963582249 @default.
- W2017300497 cites W1963771072 @default.
- W2017300497 cites W1963974986 @default.
- W2017300497 cites W1964448206 @default.
- W2017300497 cites W1964932610 @default.
- W2017300497 cites W1964979609 @default.
- W2017300497 cites W1965744338 @default.
- W2017300497 cites W1968017063 @default.
- W2017300497 cites W1969189816 @default.
- W2017300497 cites W1970432612 @default.
- W2017300497 cites W1972291235 @default.
- W2017300497 cites W1973339644 @default.
- W2017300497 cites W1973616397 @default.
- W2017300497 cites W1974109703 @default.
- W2017300497 cites W1974214441 @default.
- W2017300497 cites W1974905485 @default.
- W2017300497 cites W1976647390 @default.
- W2017300497 cites W1976684938 @default.
- W2017300497 cites W1978595165 @default.
- W2017300497 cites W1980661496 @default.
- W2017300497 cites W1981321109 @default.
- W2017300497 cites W1982849697 @default.
- W2017300497 cites W1984376875 @default.
- W2017300497 cites W1984909894 @default.
- W2017300497 cites W1985995331 @default.
- W2017300497 cites W1987576086 @default.
- W2017300497 cites W1988608998 @default.
- W2017300497 cites W1988611260 @default.
- W2017300497 cites W1989818713 @default.
- W2017300497 cites W1990396675 @default.
- W2017300497 cites W1991362933 @default.
- W2017300497 cites W1991397848 @default.
- W2017300497 cites W1992302357 @default.
- W2017300497 cites W1992491653 @default.
- W2017300497 cites W1993535848 @default.
- W2017300497 cites W1993632766 @default.
- W2017300497 cites W1993768319 @default.
- W2017300497 cites W1994142022 @default.
- W2017300497 cites W1994763452 @default.
- W2017300497 cites W1998344376 @default.
- W2017300497 cites W2002116790 @default.
- W2017300497 cites W2004269110 @default.
- W2017300497 cites W2004915799 @default.
- W2017300497 cites W2005617378 @default.
- W2017300497 cites W2005906394 @default.
- W2017300497 cites W2008586630 @default.
- W2017300497 cites W2010423227 @default.
- W2017300497 cites W2010435056 @default.
- W2017300497 cites W2010880657 @default.
- W2017300497 cites W2011334445 @default.
- W2017300497 cites W2013691733 @default.
- W2017300497 cites W2014805766 @default.
- W2017300497 cites W2015398240 @default.
- W2017300497 cites W2018456659 @default.
- W2017300497 cites W2021560542 @default.
- W2017300497 cites W2024302277 @default.
- W2017300497 cites W2025241540 @default.
- W2017300497 cites W2026021257 @default.
- W2017300497 cites W2027422461 @default.
- W2017300497 cites W2031320386 @default.
- W2017300497 cites W2032558547 @default.
- W2017300497 cites W2032849102 @default.
- W2017300497 cites W2033651257 @default.
- W2017300497 cites W2034359395 @default.
- W2017300497 cites W2035406862 @default.
- W2017300497 cites W2036659534 @default.
- W2017300497 cites W2040288219 @default.
- W2017300497 cites W2040384373 @default.
- W2017300497 cites W2043343917 @default.
- W2017300497 cites W2043954521 @default.
- W2017300497 cites W2045236820 @default.
- W2017300497 cites W2046896345 @default.
- W2017300497 cites W2047476280 @default.
- W2017300497 cites W2047676282 @default.
- W2017300497 cites W2047833630 @default.
- W2017300497 cites W2048013622 @default.
- W2017300497 cites W2049072603 @default.
- W2017300497 cites W2050673676 @default.
- W2017300497 cites W2051775459 @default.
- W2017300497 cites W2052404294 @default.
- W2017300497 cites W2052757568 @default.
- W2017300497 cites W2054218080 @default.
- W2017300497 cites W2054944382 @default.
- W2017300497 cites W2054970930 @default.
- W2017300497 cites W2055673244 @default.
- W2017300497 cites W2057022818 @default.
- W2017300497 cites W2058353656 @default.