Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017308498> ?p ?o ?g. }
- W2017308498 endingPage "591" @default.
- W2017308498 startingPage "581" @default.
- W2017308498 abstract "Geostatistical interpolation methods to estimate individual exposure to outdoor air pollutants can be used in pregnancy cohorts where personal exposure data are not collected. Our objectives were to a) develop four assessment methods (citywide average (CWA); nearest monitor (NM); inverse distance weighting (IDW); and ordinary Kriging (OK)), and b) compare daily metrics and cross-validations of interpolation models. We obtained 2008 hourly data from Mexico City's outdoor air monitoring network for PM10, PM2.5, O3, CO, NO2, and SO2 and constructed daily exposure metrics for 1,000 simulated individual locations across five populated geographic zones. Descriptive statistics from all methods were calculated for dry and wet seasons, and by zone. We also evaluated IDW and OK methods' ability to predict measured concentrations at monitors using cross validation and a coefficient of variation (COV). All methods were performed using SAS 9.3, except ordinary Kriging which was modeled using R's gstat package. Overall, mean concentrations and standard deviations were similar among the different methods for each pollutant. Correlations between methods were generally high (r=0.77 to 0.99). However, ranges of estimated concentrations determined by NM, IDW, and OK were wider than the ranges for CWA. Root mean square errors for OK were consistently equal to or lower than for the IDW method. OK standard errors varied considerably between pollutants and the computed COVs ranged from 0.46 (least error) for SO2 and PM10 to 3.91 (most error) for PM2.5. OK predicted concentrations measured at the monitors better than IDW and NM. Given the similarity in results for the exposure methods, OK is preferred because this method alone provides predicted standard errors which can be incorporated in statistical models. The daily estimated exposures calculated using these different exposure methods provide flexibility to evaluate multiple windows of exposure during pregnancy, not just trimester or pregnancy-long exposures.Many studies evaluating associations between outdoor air pollution and adverse pregnancy outcomes rely on outdoor air pollution monitoring data linked to information gathered from large birth registries, and often lack residence location information needed to estimate individual exposure. This study simulated 1,000 residential locations to evaluate four air pollution exposure assessment methods, and describes possible exposure misclassification from using spatial averaging versus geostatistical interpolation models. An implication of this work is that policies to reduce air pollution and exposure among pregnant women based on epidemiologic literature should take into account possible error in estimates of effect when spatial averages alone are evaluated." @default.
- W2017308498 created "2016-06-24" @default.
- W2017308498 creator A5003850660 @default.
- W2017308498 creator A5027965960 @default.
- W2017308498 creator A5061016444 @default.
- W2017308498 creator A5065260102 @default.
- W2017308498 creator A5070259161 @default.
- W2017308498 creator A5076055313 @default.
- W2017308498 creator A5076268620 @default.
- W2017308498 creator A5077172859 @default.
- W2017308498 creator A5090231824 @default.
- W2017308498 date "2015-02-26" @default.
- W2017308498 modified "2023-10-18" @default.
- W2017308498 title "An assessment of air pollutant exposure methods in Mexico City, Mexico" @default.
- W2017308498 cites W1966313220 @default.
- W2017308498 cites W1977017075 @default.
- W2017308498 cites W1978653090 @default.
- W2017308498 cites W1994577768 @default.
- W2017308498 cites W1994711945 @default.
- W2017308498 cites W1995243424 @default.
- W2017308498 cites W1998740005 @default.
- W2017308498 cites W1999076532 @default.
- W2017308498 cites W2002094444 @default.
- W2017308498 cites W2007873570 @default.
- W2017308498 cites W2011883632 @default.
- W2017308498 cites W2017424681 @default.
- W2017308498 cites W2018406264 @default.
- W2017308498 cites W2018539650 @default.
- W2017308498 cites W2021708333 @default.
- W2017308498 cites W2024873009 @default.
- W2017308498 cites W2027337590 @default.
- W2017308498 cites W2027931249 @default.
- W2017308498 cites W2037046710 @default.
- W2017308498 cites W2046182010 @default.
- W2017308498 cites W2047027145 @default.
- W2017308498 cites W2051145078 @default.
- W2017308498 cites W2051155395 @default.
- W2017308498 cites W2051934877 @default.
- W2017308498 cites W2054186498 @default.
- W2017308498 cites W2055730719 @default.
- W2017308498 cites W2056284838 @default.
- W2017308498 cites W2057978329 @default.
- W2017308498 cites W2063077402 @default.
- W2017308498 cites W2065947772 @default.
- W2017308498 cites W2067927950 @default.
- W2017308498 cites W2070191323 @default.
- W2017308498 cites W2070211164 @default.
- W2017308498 cites W2072240674 @default.
- W2017308498 cites W2072835038 @default.
- W2017308498 cites W2073215590 @default.
- W2017308498 cites W2079960452 @default.
- W2017308498 cites W2084232990 @default.
- W2017308498 cites W2090126756 @default.
- W2017308498 cites W2090636204 @default.
- W2017308498 cites W2099278548 @default.
- W2017308498 cites W2101450248 @default.
- W2017308498 cites W2104630040 @default.
- W2017308498 cites W2107319458 @default.
- W2017308498 cites W2107505472 @default.
- W2017308498 cites W2112964831 @default.
- W2017308498 cites W2115251260 @default.
- W2017308498 cites W2129153195 @default.
- W2017308498 cites W2149171252 @default.
- W2017308498 cites W2156205703 @default.
- W2017308498 cites W2158822760 @default.
- W2017308498 cites W2161302222 @default.
- W2017308498 cites W2168816058 @default.
- W2017308498 cites W2169707207 @default.
- W2017308498 cites W4254253914 @default.
- W2017308498 cites W51088488 @default.
- W2017308498 cites W55164284 @default.
- W2017308498 doi "https://doi.org/10.1080/10962247.2015.1020974" @default.
- W2017308498 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4670782" @default.
- W2017308498 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25947316" @default.
- W2017308498 hasPublicationYear "2015" @default.
- W2017308498 type Work @default.
- W2017308498 sameAs 2017308498 @default.
- W2017308498 citedByCount "50" @default.
- W2017308498 countsByYear W20173084982016 @default.
- W2017308498 countsByYear W20173084982017 @default.
- W2017308498 countsByYear W20173084982018 @default.
- W2017308498 countsByYear W20173084982019 @default.
- W2017308498 countsByYear W20173084982020 @default.
- W2017308498 countsByYear W20173084982021 @default.
- W2017308498 countsByYear W20173084982022 @default.
- W2017308498 countsByYear W20173084982023 @default.
- W2017308498 crossrefType "journal-article" @default.
- W2017308498 hasAuthorship W2017308498A5003850660 @default.
- W2017308498 hasAuthorship W2017308498A5027965960 @default.
- W2017308498 hasAuthorship W2017308498A5061016444 @default.
- W2017308498 hasAuthorship W2017308498A5065260102 @default.
- W2017308498 hasAuthorship W2017308498A5070259161 @default.
- W2017308498 hasAuthorship W2017308498A5076055313 @default.
- W2017308498 hasAuthorship W2017308498A5076268620 @default.
- W2017308498 hasAuthorship W2017308498A5077172859 @default.
- W2017308498 hasAuthorship W2017308498A5090231824 @default.
- W2017308498 hasBestOaLocation W20173084982 @default.
- W2017308498 hasConcept C105795698 @default.