Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017326015> ?p ?o ?g. }
- W2017326015 endingPage "271" @default.
- W2017326015 startingPage "260" @default.
- W2017326015 abstract "Mass spectrometry (MS)-based phosphoproteomics has achieved extraordinary success in qualitative and quantitative analysis of cellular protein phosphorylation. Considering that an estimated level of phosphorylation in a cell is placed at well above 100 000 sites, there is still much room for improvement. Here, we attempt to extend the depth of phosphoproteome coverage while maintaining realistic aspirations in terms of available material, robustness, and instrument running time. We developed three strategies, where each provided a different balance between these three key parameters. The first strategy simply used enrichment by Ti4+-IMAC followed by reversed chromatography LC–MS (termed 1D). The second strategy incorporated an additional fractionation step through the use of HILIC (2D). Finally, a third strategy was designed employing first an SCX fractionation, followed by Ti4+-IMAC enrichment and additional fractionation by HILIC (3D). A preliminary evaluation was performed on the HeLa cell line. Detecting 3700 phosphopeptides in about 2 h, the 1D strategy was found to be the most sensitive but limited in comprehensivity, mainly due to issues with complexity and dynamic range. Overall, the best balance was achieved using the 2D based strategy, identifying close to 17 000 phosphopeptides with less than 1 mg of material in about 48 h. Subsequently, we confirmed the findings with the K562 cell sample. When sufficient material was available, the 3D strategy increased phosphoproteome allowing over 22 000 unique phosphopeptides to be identified. Unfortunately, the 3D strategy required more time and over 1 mg of material before it started to outperform 2D. Ultimately, combining all strategies, we were able to identify over 16 000 and nearly 24 000 unique phosphorylation sites from the cancer cell lines HeLa and K562, respectively. In summary, we demonstrate the need to carry out extensive fractionation for deep mining of the phosphoproteome and provide a guide for appropriate strategies depending on sample amount and/or analysis time." @default.
- W2017326015 created "2016-06-24" @default.
- W2017326015 creator A5004922923 @default.
- W2017326015 creator A5017782298 @default.
- W2017326015 creator A5043090747 @default.
- W2017326015 creator A5053603496 @default.
- W2017326015 creator A5066241536 @default.
- W2017326015 creator A5070015330 @default.
- W2017326015 creator A5071143347 @default.
- W2017326015 date "2012-12-18" @default.
- W2017326015 modified "2023-10-18" @default.
- W2017326015 title "Toward a Comprehensive Characterization of a Human Cancer Cell Phosphoproteome" @default.
- W2017326015 cites W1968142651 @default.
- W2017326015 cites W1975234428 @default.
- W2017326015 cites W1980843814 @default.
- W2017326015 cites W1993571705 @default.
- W2017326015 cites W1996693787 @default.
- W2017326015 cites W2000042427 @default.
- W2017326015 cites W2006587944 @default.
- W2017326015 cites W2009866301 @default.
- W2017326015 cites W2011503307 @default.
- W2017326015 cites W2014872858 @default.
- W2017326015 cites W2018247248 @default.
- W2017326015 cites W2019592149 @default.
- W2017326015 cites W2021469232 @default.
- W2017326015 cites W2023096047 @default.
- W2017326015 cites W2027555680 @default.
- W2017326015 cites W2028387937 @default.
- W2017326015 cites W2030157681 @default.
- W2017326015 cites W2033889320 @default.
- W2017326015 cites W2035415099 @default.
- W2017326015 cites W2044620987 @default.
- W2017326015 cites W2048666997 @default.
- W2017326015 cites W2050265576 @default.
- W2017326015 cites W2053943711 @default.
- W2017326015 cites W2054235690 @default.
- W2017326015 cites W2055152749 @default.
- W2017326015 cites W2055922694 @default.
- W2017326015 cites W2056914469 @default.
- W2017326015 cites W2066928228 @default.
- W2017326015 cites W2068972095 @default.
- W2017326015 cites W2071609491 @default.
- W2017326015 cites W2075837203 @default.
- W2017326015 cites W2076135067 @default.
- W2017326015 cites W2078004298 @default.
- W2017326015 cites W2079817279 @default.
- W2017326015 cites W2083084454 @default.
- W2017326015 cites W2090806203 @default.
- W2017326015 cites W2096217402 @default.
- W2017326015 cites W2099682053 @default.
- W2017326015 cites W2101498115 @default.
- W2017326015 cites W2104726963 @default.
- W2017326015 cites W2105793503 @default.
- W2017326015 cites W2106074866 @default.
- W2017326015 cites W2110343786 @default.
- W2017326015 cites W2110663167 @default.
- W2017326015 cites W2112127173 @default.
- W2017326015 cites W2115509391 @default.
- W2017326015 cites W2115578546 @default.
- W2017326015 cites W2117903500 @default.
- W2017326015 cites W2123347941 @default.
- W2017326015 cites W2123929534 @default.
- W2017326015 cites W2125332600 @default.
- W2017326015 cites W2125574061 @default.
- W2017326015 cites W2129777487 @default.
- W2017326015 cites W2140638448 @default.
- W2017326015 cites W2140969503 @default.
- W2017326015 cites W2149862902 @default.
- W2017326015 cites W2157658519 @default.
- W2017326015 cites W2163229353 @default.
- W2017326015 cites W2166305185 @default.
- W2017326015 cites W2167573033 @default.
- W2017326015 cites W2314938037 @default.
- W2017326015 cites W2325375737 @default.
- W2017326015 cites W2330449794 @default.
- W2017326015 cites W2916483810 @default.
- W2017326015 doi "https://doi.org/10.1021/pr300630k" @default.
- W2017326015 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23186163" @default.
- W2017326015 hasPublicationYear "2012" @default.
- W2017326015 type Work @default.
- W2017326015 sameAs 2017326015 @default.
- W2017326015 citedByCount "351" @default.
- W2017326015 countsByYear W20173260152013 @default.
- W2017326015 countsByYear W20173260152014 @default.
- W2017326015 countsByYear W20173260152015 @default.
- W2017326015 countsByYear W20173260152016 @default.
- W2017326015 countsByYear W20173260152017 @default.
- W2017326015 countsByYear W20173260152018 @default.
- W2017326015 countsByYear W20173260152019 @default.
- W2017326015 countsByYear W20173260152020 @default.
- W2017326015 countsByYear W20173260152021 @default.
- W2017326015 countsByYear W20173260152022 @default.
- W2017326015 countsByYear W20173260152023 @default.
- W2017326015 crossrefType "journal-article" @default.
- W2017326015 hasAuthorship W2017326015A5004922923 @default.
- W2017326015 hasAuthorship W2017326015A5017782298 @default.
- W2017326015 hasAuthorship W2017326015A5043090747 @default.
- W2017326015 hasAuthorship W2017326015A5053603496 @default.