Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017334428> ?p ?o ?g. }
- W2017334428 endingPage "826" @default.
- W2017334428 startingPage "820" @default.
- W2017334428 abstract "No AccessJournal of UrologyReview Articles1 Sep 2005IN VIVO MODELS OF PROSTATE CANCER METASTASIS TO BONE ARUN S. SINGH, and WILLIAM D. FIGG ARUN S. SINGHARUN S. SINGH More articles by this author , and WILLIAM D. FIGGWILLIAM D. FIGG More articles by this author View All Author Informationhttps://doi.org/10.1097/01.ju.0000169133.82167.aaAboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract Purpose: The metastasis of prostate cancer to bone is the most significant cause of morbidity and mortality in this disease. An estimated 28,900 men die annually secondary to prostate cancer bone metastasis. Current treatments increase survival for 2 months and only bisphosphonates offer any palliative benefit. This shortcoming is due in part to inadequate models in which to study the molecular biology of the disease and evaluate therapeutic regimens. We examined the breadth of models available that recapitulate the process of prostate cancer metastasis to bone. Materials and Methods: A PubMed search was done for publications concerning prostate cancer metastasis to bone and the imaging of bone metastases. Only studies focusing on model systems of disease progression and imaging of the process were included. Additional studies were found by cross-reference searching. Results: Prostate cancer metastasis to bone is a lengthy, complex process characterized by multiple stages. This has made it difficult to find adequate laboratory models in which to recreate the disease process. Each available model has characteristics of particular phases of disease progression to bone. The most widely used models are transgenic mice, variations of SCID mice, and the traditional orthotopic and xenotransplantation models. Furthermore, investigators have started to adapt their models to incorporate imaging modalities for following the progression of prostate cancer to bone. Conclusions: The development of models of prostate cancer metastasis to bone is an evolving discipline. A deeper understanding of the metastatic process has served to improve current models and it will continue to do so in the future. References 1 : Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer2002; 2: 584. Google Scholar 2 : Cancer statistics, 2003. CA Cancer J Clin2003; 53: 5. Google Scholar 3 : The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer2000; 88: 2989. Google Scholar 4 : Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med2004; 351: 1513. Google Scholar 5 : Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med2004; 351: 1502. Google Scholar 6 : A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst2002; 94: 1458. Google Scholar 7 : Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer2002; 2: 563. Google Scholar 8 : Prostate carcinoma bone-stroma interaction and its biologic and therapeutic implications. Cancer2003; 97: 772. Google Scholar 9 : Osteoblastic metastasis in advanced prostate cancer. Anticancer Res1993; 13: 443. Google Scholar 10 : Workgroup 4: spontaneous prostate carcinoma in dogs and nonhuman primates. Prostate1998; 36: 64. Google Scholar 11 : Use of markers of bone turnover for monitoring bone metastases and the response to therapy. Semin Oncol2001; 28: 54. Google Scholar 12 : Culture of human prostate epithelial cells. In: Culture of Epithelial Cells. Edited by . New York: Wiley-Liss, Inc.1992: 159. Google Scholar 13 : Molecular characterization of human prostate carcinoma cell lines. Prostate2003; 57: 205. Google Scholar 14 : Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat Med1997; 3: 402. Google Scholar 15 : Isolation and characterization of PC-3 human prostatic tumor sublines which preferentially metastasize to select organs in S.C.I.D. mice. Differentiation1991; 48: 115. Google Scholar 16 : Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res1994; 54: 2577. Google Scholar 17 : LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate2000; 44: 91. Google Scholar 18 : CL1-GFP: an androgen independent metastatic tumor model for prostate cancer. J Urol2000; 164: 1420. Link, Google Scholar 19 : Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int J Cancer1998; 77: 887. Google Scholar 20 : Models of metastatic prostate cancer: a transgenic perspective. Prostate Cancer Prostatic Dis2003; 6: 204. Google Scholar 21 : Genetically modified mice and their use in developing therapeutic strategies for prostate cancer. J Urol2004; 172: 12. Abstract, Google Scholar 22 : Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res2004; 64: 2270. Google Scholar 23 : The loss of TGF-beta signaling promotes prostate cancer metastasis. Neoplasia2003; 5: 267. Google Scholar 24 : A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Res2001; 61: 2239. Google Scholar 25 : Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell2003; 4: 209. Google Scholar 26 : Plasma osteopontin: associations with survival and metastasis to bone in men with hormone-refractory prostate carcinoma. Cancer2002; 95: 506. Google Scholar 27 : Rules for making human tumor cells. N Engl J Med2002; 347: 1593. Google Scholar 28 : Dietary 4-HPR suppresses the development of bone metastasis in vivo in a mouse model of prostate cancer progression. Clin Exp Metastasis2000; 18: 429. Google Scholar 29 : Loss of p53 function leads to metastasis in ras+myc-initiated mouse prostate cancer. Oncogene1995; 10: 869. Google Scholar 30 : Metastatic model for human prostate cancer using orthotopic implantation in nude mice. J Natl Cancer Inst1992; 84: 951. Google Scholar 31 : Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res1996; 2: 1627. Google Scholar 32 : A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res1999; 59: 781. Google Scholar 33 : Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells. Cancer J2000; 6: 220. Google Scholar 34 : Viable circulating metastatic cells produced in orthotopic but not ectopic prostate cancer models. Cancer Res2003; 63: 4239. Google Scholar 35 : A novel method of generating prostate cancer metastases from orthotopic implants. Prostate2003; 56: 110. Google Scholar 36 : Surgical orthotopic implantation allows high lung and lymph node metastatic expression of human prostate carcinoma cell line PC-3 in nude mice. Prostate1998; 34: 169. Google Scholar 37 : A Nod Scid mouse model to study human prostate cancer. Prostate Cancer Prostatic Dis2002; 5: 311. Google Scholar 38 : Species-specific metastasis of human tumor cells in the severe combined immunodeficiency mouse engrafted with human tissue. Proc Natl Acad Sci USA1995; 92: 4661. Google Scholar 39 : Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Res1999; 59: 1987. Google Scholar 40 : Rat prostate adenocarcinoma cells disseminate to bone and adhere preferentially to bone marrow-derived endothelial cells. Cancer Res1992; 52: 4613. Google Scholar 41 : Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res1984; 44: 3522. Google Scholar 42 : Establishment of a novel species- and tissue-specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Res2001; 61: 2177. Google Scholar 43 : Intraosseous growth of human prostate cancer in implanted adult human bone: relationship of prostate cancer cells to osteoclasts in osteoblastic metastatic lesions. Prostate2004; 58: 406. Google Scholar 44 : Zoledronic acid exhibits inhibitory effects on osteoblastic and osteolytic metastases of prostate cancer. Clin Cancer Res2003; 9: 295. Google Scholar 45 : Development of an animal model for prostate cancer cell metastasis to adult human bone. Anticancer Res2001; 21: 971. Google Scholar 46 : Inhibition of alpha(v)beta3 integrin reduces angiogenesis, bone turnover, and tumor cell proliferation in experimental prostate cancer bone metastases. Clin Exp Metastasis2003; 20: 413. Google Scholar 47 : Comparative intraosseal growth of human prostate cancer cell lines LNCaP and PC-3 in the nude mouse. Anticancer Res1997; 17: 4253. Google Scholar 48 : Heterotopic growth of human prostate carcinoma in the femurs of nude mice: an osseous metastatic model. Int J Cancer1996; 66: 280. Google Scholar 49 : Use of zoledronate to treat osteoblastic versus osteolytic lesions in a severe-combined-immunodeficient mouse model. Cancer Res2002; 62: 5564. Google Scholar 50 : Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate2002; 52: 20. Google Scholar 51 : Osteoprotegerin/osteoclastogenesis inhibitory factor decreases human prostate cancer burden in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice. Cancer Res2003; 63: 2096. Google Scholar 52 : Effect of nucleoside analogue BCH-4556 on prostate cancer growth and metastases in vitro and in vivo. Cancer Res1998; 58: 3461. Google Scholar 53 : A synthetic 15-mer peptide (PCK3145) derived from prostate secretory protein can reduce tumor growth, experimental skeletal metastases, and malignancy-associated hypercalcemia. Cancer Res2004; 64: 5370. Google Scholar 54 : Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev2003; 17: 545. Google Scholar 55 : In vivo monitoring of tumor relapse and metastasis using bioluminescent PC-3M-luc-C6 cells in murine models of human prostate cancer. Clin Exp Metastasis2003; 20: 745. Google Scholar 56 : Combined noninvasive imaging and luminometric quantification of luciferase-labeled human prostate tumors and metastases. Lab Invest2002; 82: 1563. Google Scholar 57 : Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat Med2002; 8: 891. Google Scholar 58 : Comparison of noninvasive fluorescent and bioluminescent small animal optical imaging. Biotechniques2003; 35: 1022. Google Scholar 59 : In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol2001; 19: 1148. Google Scholar 60 : Molecular imaging of the skeleton: quantitative real-time bioluminescence monitoring gene expression in bone repair and development. J Bone Miner Res2003; 18: 570. Google Scholar 61 : A metastatic human prostate cancer model using intraprostatic implantation of tumor produced by PC-3 neolacZ transfected cells. Int J Oncol2003; 23: 1569. Google Scholar 62 : Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Res2001; 61: 3882. Google Scholar 63 : Tracking micrometastasis to multiple organs with lacZ-tagged CWR22R prostate carcinoma cells. J Histochem Cytochem2000; 48: 643. Google Scholar 64 : Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc Natl Acad Sci USA2001; 98: 10350. Google Scholar 65 : Hepsin promotes prostate cancer progression and metastasis. Cancer Cell2004; 6: 185. Google Scholar 66 : Suppression of human prostate carcinoma metastases in severe combined immunodeficient mice by interleukin 2 immunocytokine therapy. Clin Cancer Res1998; 4: 2551. Google Scholar 67 : Development of skeletal metastasis by human prostate cancer in athymic nude mice. Clin Exp Metastasis1988; 6: 401. Google Scholar 68 : Growth inhibition of human prostate cancer cells in human adult bone implanted into nonobese diabetic/severe combined immunodeficient mice by a ligand-specific antibody to human insulin-like growth factors. Cancer Res2004; 64: 6252. Google Scholar 69 : Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis. Clin Exp Metastasis2003; 20: 733. Google Scholar From the Molecular Pharmacology Section, Cancer Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland© 2005 by American Urological Association, Inc.FiguresReferencesRelatedDetails Volume 174Issue 3September 2005Page: 820-826 Advertisement Copyright & Permissions© 2005 by American Urological Association, Inc.Keywordsneoplasm metastasisprostatebone and bonesprostatic neoplasmsMetricsAuthor Information ARUN S. SINGH More articles by this author WILLIAM D. FIGG More articles by this author Expand All Advertisement PDF DownloadLoading ..." @default.
- W2017334428 created "2016-06-24" @default.
- W2017334428 creator A5043007782 @default.
- W2017334428 creator A5064625461 @default.
- W2017334428 date "2005-09-01" @default.
- W2017334428 modified "2023-10-15" @default.
- W2017334428 title "IN VIVO MODELS OF PROSTATE CANCER METASTASIS TO BONE" @default.
- W2017334428 cites W101724263 @default.
- W2017334428 cites W148014305 @default.
- W2017334428 cites W1545371816 @default.
- W2017334428 cites W1546251826 @default.
- W2017334428 cites W1547406244 @default.
- W2017334428 cites W1624649331 @default.
- W2017334428 cites W1782000195 @default.
- W2017334428 cites W1963761815 @default.
- W2017334428 cites W1964293393 @default.
- W2017334428 cites W1965674043 @default.
- W2017334428 cites W1975441355 @default.
- W2017334428 cites W1980873645 @default.
- W2017334428 cites W1989968238 @default.
- W2017334428 cites W1997813173 @default.
- W2017334428 cites W1998254907 @default.
- W2017334428 cites W2001964622 @default.
- W2017334428 cites W2005558806 @default.
- W2017334428 cites W2007897263 @default.
- W2017334428 cites W2012195608 @default.
- W2017334428 cites W2017757468 @default.
- W2017334428 cites W2020541872 @default.
- W2017334428 cites W2023097049 @default.
- W2017334428 cites W2028853380 @default.
- W2017334428 cites W2034083867 @default.
- W2017334428 cites W2035169760 @default.
- W2017334428 cites W2038811675 @default.
- W2017334428 cites W2046234516 @default.
- W2017334428 cites W2053926227 @default.
- W2017334428 cites W2055184276 @default.
- W2017334428 cites W2064356036 @default.
- W2017334428 cites W2066845679 @default.
- W2017334428 cites W2067602854 @default.
- W2017334428 cites W2072303914 @default.
- W2017334428 cites W2074058888 @default.
- W2017334428 cites W2075451472 @default.
- W2017334428 cites W2080439368 @default.
- W2017334428 cites W2087324367 @default.
- W2017334428 cites W2089744251 @default.
- W2017334428 cites W2091172283 @default.
- W2017334428 cites W2095925876 @default.
- W2017334428 cites W2097435460 @default.
- W2017334428 cites W2098095015 @default.
- W2017334428 cites W2098166427 @default.
- W2017334428 cites W2099054500 @default.
- W2017334428 cites W2109694492 @default.
- W2017334428 cites W2116456988 @default.
- W2017334428 cites W2119507443 @default.
- W2017334428 cites W2120292596 @default.
- W2017334428 cites W2120427107 @default.
- W2017334428 cites W2120747154 @default.
- W2017334428 cites W2122343462 @default.
- W2017334428 cites W2124958721 @default.
- W2017334428 cites W2142285790 @default.
- W2017334428 cites W2144642146 @default.
- W2017334428 cites W2144680000 @default.
- W2017334428 cites W2146465225 @default.
- W2017334428 cites W2147244050 @default.
- W2017334428 cites W2153218509 @default.
- W2017334428 cites W2156854438 @default.
- W2017334428 cites W2164838111 @default.
- W2017334428 cites W2165580132 @default.
- W2017334428 cites W2171376460 @default.
- W2017334428 cites W2316462755 @default.
- W2017334428 cites W2406679019 @default.
- W2017334428 cites W2432508030 @default.
- W2017334428 cites W2607028219 @default.
- W2017334428 cites W42965546 @default.
- W2017334428 cites W71698754 @default.
- W2017334428 cites W74547189 @default.
- W2017334428 doi "https://doi.org/10.1097/01.ju.0000169133.82167.aa" @default.
- W2017334428 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16093963" @default.
- W2017334428 hasPublicationYear "2005" @default.
- W2017334428 type Work @default.
- W2017334428 sameAs 2017334428 @default.
- W2017334428 citedByCount "65" @default.
- W2017334428 countsByYear W20173344282012 @default.
- W2017334428 countsByYear W20173344282013 @default.
- W2017334428 countsByYear W20173344282014 @default.
- W2017334428 countsByYear W20173344282015 @default.
- W2017334428 countsByYear W20173344282016 @default.
- W2017334428 countsByYear W20173344282017 @default.
- W2017334428 countsByYear W20173344282018 @default.
- W2017334428 countsByYear W20173344282019 @default.
- W2017334428 countsByYear W20173344282021 @default.
- W2017334428 countsByYear W20173344282022 @default.
- W2017334428 countsByYear W20173344282023 @default.
- W2017334428 crossrefType "journal-article" @default.
- W2017334428 hasAuthorship W2017334428A5043007782 @default.
- W2017334428 hasAuthorship W2017334428A5064625461 @default.
- W2017334428 hasConcept C121608353 @default.
- W2017334428 hasConcept C126322002 @default.