Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017334752> ?p ?o ?g. }
- W2017334752 endingPage "50" @default.
- W2017334752 startingPage "36" @default.
- W2017334752 abstract "Background There is considerable unexplained variability in alfentanil pharmacokinetics, particularly systemic clearance. Alfentanil is extensively metabolized in vivo, and thus systemic clearance depends on hepatic biotransformation. Cytochrome P450 3A4 was previously shown to be the predominant P450 isoform responsible for human liver microsomal alfentanil metabolism in vitro. This investigation tested the hypothesis that P450 3A4 is responsible for human alfentanil metabolism and clearance in vivo. Methods Nine healthy male volunteers who provided institutionally approved written informed consent were studied in a three-way randomized crossover design. Each subject received alfentanil (20 micrograms/kg given intravenously) 30 min after midazolam (1 mg injected intravenously) on three occasions: control; high P450 3A4 activity (rifampin induction); and low P450 3A4 activity (selective inhibition by troleandomycin). Midazolam is a validated selective in vivo probe for P450 3A4 activity. Venous blood was sampled for 24 h and plasma concentrations of midazolam and alfentanil and their primary metabolites 1'-hydroxymidazolam and noralfentanil were measured by gas chromatography-mass spectrometry. Pharmacokinetic parameters were determined by two-stage analysis using both noncompartmental and three-compartment models. Results Plasma alfentanil concentration-time profiles depended significantly on P450 3A4 activity. Alfentanil noncompartmental clearance was 5.3 +/- 2.3, 14.6 +/- 3.8, and 1.1 +/- 0.5 ml.kg-1.min-1, and elimination half-life was 58 +/- 13, 35 +/- 7, and 630 +/- 374 min, respectively, in participants with normal (controls), high (rifampin), and low (troleandomycin) P450 3A4 activity (means +/- SD; P < 0.05 compared with controls). Multicompartmental modeling suggested a time-dependent inhibition-resynthesis model for troleandomycin effects on P450 3A4 activity, characterized as k10(t) = k10[1-phi e-alpha(t-tzero)], where k10(t) is the apparent time-dependent rate constant, k10 is the uninhibited rate constant, phi is the fraction of P450 3A4 inhibited, and alpha is the apparent P450 3A4 reactivation rate. Alfentanil clearance was calculated as V1 k10 for controls and men receiving rifampin, and as V1.average k10(t) for men receiving troleandomycin. This clearance was 4.9 +/- 2.1, 13.2 +/- 3.6, and 1.5 +/- 0.8 ml.kg-1.min-1, respectively, in controls and in men receiving rifampin or troleandomycin. There was a significant correlation (r = 0.97, P < 0.001) between alfentanil systemic clearance and P450 3A4 activity. Conclusions Modulation of P450 3A4 activity by rifampin and troleandomycin significantly altered alfentanil clearance and disposition. These results strongly suggest that P450 3A4 is the major isoform of P450 responsible for clinical alfentanil metabolism and clearance. This observation, combined with the known population variability in P450 3A4 activity, provides a mechanistic explanation for the interindividual variability in alfentanil disposition. Furthermore, known susceptibility of human P450 3A4 activity to induction and inhibition provides a conceptual framework for understanding and predicting clinical alfentanil drug interactions. Finally, human liver microsomal alfentanil metabolism in vitro is confirmed as an excellent model for human alfentanil metabolism in vivo." @default.
- W2017334752 created "2016-06-24" @default.
- W2017334752 creator A5004489015 @default.
- W2017334752 creator A5004791103 @default.
- W2017334752 creator A5006256835 @default.
- W2017334752 creator A5012844446 @default.
- W2017334752 creator A5048948828 @default.
- W2017334752 creator A5064789646 @default.
- W2017334752 creator A5068941997 @default.
- W2017334752 date "1997-07-01" @default.
- W2017334752 modified "2023-09-26" @default.
- W2017334752 title "The Role of Cytochrome P450 3A4 in Alfentanil Clearance " @default.
- W2017334752 cites W1520965071 @default.
- W2017334752 cites W1533470994 @default.
- W2017334752 cites W1550422636 @default.
- W2017334752 cites W162702352 @default.
- W2017334752 cites W1765706822 @default.
- W2017334752 cites W1846579908 @default.
- W2017334752 cites W1882430758 @default.
- W2017334752 cites W1892194801 @default.
- W2017334752 cites W1901300892 @default.
- W2017334752 cites W1902765013 @default.
- W2017334752 cites W1932158148 @default.
- W2017334752 cites W1949292594 @default.
- W2017334752 cites W1965799818 @default.
- W2017334752 cites W1967733236 @default.
- W2017334752 cites W1970648957 @default.
- W2017334752 cites W1975628073 @default.
- W2017334752 cites W1975639237 @default.
- W2017334752 cites W1975972581 @default.
- W2017334752 cites W1978358504 @default.
- W2017334752 cites W1980653601 @default.
- W2017334752 cites W1986703676 @default.
- W2017334752 cites W1987239835 @default.
- W2017334752 cites W1987767574 @default.
- W2017334752 cites W1988858173 @default.
- W2017334752 cites W1989740023 @default.
- W2017334752 cites W1990652438 @default.
- W2017334752 cites W1993263798 @default.
- W2017334752 cites W1993437658 @default.
- W2017334752 cites W1997016310 @default.
- W2017334752 cites W1997376687 @default.
- W2017334752 cites W1998943150 @default.
- W2017334752 cites W2006905711 @default.
- W2017334752 cites W2007366202 @default.
- W2017334752 cites W2020738884 @default.
- W2017334752 cites W2026510672 @default.
- W2017334752 cites W2048392483 @default.
- W2017334752 cites W2049622757 @default.
- W2017334752 cites W2051508505 @default.
- W2017334752 cites W2052006868 @default.
- W2017334752 cites W2056563604 @default.
- W2017334752 cites W2059293500 @default.
- W2017334752 cites W2059588998 @default.
- W2017334752 cites W2061297691 @default.
- W2017334752 cites W2061539226 @default.
- W2017334752 cites W2068393819 @default.
- W2017334752 cites W2074202820 @default.
- W2017334752 cites W2075877650 @default.
- W2017334752 cites W2075894715 @default.
- W2017334752 cites W2077932908 @default.
- W2017334752 cites W2078414113 @default.
- W2017334752 cites W2082076628 @default.
- W2017334752 cites W2087056538 @default.
- W2017334752 cites W2092498635 @default.
- W2017334752 cites W2114089215 @default.
- W2017334752 cites W2124905894 @default.
- W2017334752 cites W2141664618 @default.
- W2017334752 cites W2151116327 @default.
- W2017334752 cites W2151118622 @default.
- W2017334752 cites W2155268095 @default.
- W2017334752 cites W56240973 @default.
- W2017334752 cites W2021678846 @default.
- W2017334752 cites W2239076821 @default.
- W2017334752 cites W2797323304 @default.
- W2017334752 doi "https://doi.org/10.1097/00000542-199707000-00006" @default.
- W2017334752 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9232132" @default.
- W2017334752 hasPublicationYear "1997" @default.
- W2017334752 type Work @default.
- W2017334752 sameAs 2017334752 @default.
- W2017334752 citedByCount "113" @default.
- W2017334752 countsByYear W20173347522012 @default.
- W2017334752 countsByYear W20173347522013 @default.
- W2017334752 countsByYear W20173347522014 @default.
- W2017334752 countsByYear W20173347522015 @default.
- W2017334752 countsByYear W20173347522016 @default.
- W2017334752 countsByYear W20173347522017 @default.
- W2017334752 countsByYear W20173347522018 @default.
- W2017334752 countsByYear W20173347522019 @default.
- W2017334752 countsByYear W20173347522021 @default.
- W2017334752 crossrefType "journal-article" @default.
- W2017334752 hasAuthorship W2017334752A5004489015 @default.
- W2017334752 hasAuthorship W2017334752A5004791103 @default.
- W2017334752 hasAuthorship W2017334752A5006256835 @default.
- W2017334752 hasAuthorship W2017334752A5012844446 @default.
- W2017334752 hasAuthorship W2017334752A5048948828 @default.
- W2017334752 hasAuthorship W2017334752A5064789646 @default.
- W2017334752 hasAuthorship W2017334752A5068941997 @default.