Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017339903> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2017339903 endingPage "505" @default.
- W2017339903 startingPage "431" @default.
- W2017339903 abstract "Throughout this paper <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=e> <mml:semantics> <mml:mi>e</mml:mi> <mml:annotation encoding=application/x-tex>e</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denotes an integer <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=greater-than-or-slanted-equals 3> <mml:semantics> <mml:mrow> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>geqslant 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a prime <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=identical-to 1 left-parenthesis mod e right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mspace width=thickmathspace /> <mml:mn>1</mml:mn> <mml:mtext> </mml:mtext> <mml:mspace width=0.667em /> <mml:mo stretchy=false>(</mml:mo> <mml:mi>mod</mml:mi> <mml:mspace width=0.333em /> <mml:mi>e</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>equiv ;1 pmod e</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. With <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=application/x-tex>f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> defined by <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p equals e f plus 1> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mi>e</mml:mi> <mml:mi>f</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>p = ef + 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and for integers <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=r> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding=application/x-tex>r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=s> <mml:semantics> <mml:mi>s</mml:mi> <mml:annotation encoding=application/x-tex>s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfying <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=1 less-than-or-slanted-equals s greater-than r less-than-or-slanted-equals e minus 1> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mi>s</mml:mi> <mml:mo>></mml:mo> <mml:mi>r</mml:mi> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mi>e</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>1 leqslant s > r leqslant e - 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> , certain binomial coefficients <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=StartBinomialOrMatrix r f Choose s f EndBinomialOrMatrix> <mml:semantics> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtable rowspacing=4pt columnspacing=1em> <mml:mtr> <mml:mtd> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>r</mml:mi> <mml:mi>f</mml:mi> </mml:mrow> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>s</mml:mi> <mml:mi>f</mml:mi> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>left ( {begin {array}{*{20}{c}} {rf} {sf} end {array} } right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> have been determined in terms of the parameters in various binary and quaternary quadratic forms by, for example, Gauss [<bold>13</bold>], Jacobi [<bold>19</bold>, <bold>20</bold>], Stern [<bold>37</bold>-<bold>40</bold>], Lehmer [<bold>23</bold>] and Whiteman [<bold>42</bold>, <bold>45</bold>, <bold>46</bold>]. In <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=section-sign 2> <mml:semantics> <mml:mrow> <mml:mi mathvariant=normal>§<!-- § --></mml:mi> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>S 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we determine for each <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=e> <mml:semantics> <mml:mi>e</mml:mi> <mml:annotation encoding=application/x-tex>e</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the exact number of binomial coefficients <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=StartBinomialOrMatrix r f Choose s f EndBinomialOrMatrix> <mml:semantics> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mtable rowspacing=4pt columnspacing=1em> <mml:mtr> <mml:mtd> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>r</mml:mi> <mml:mi>f</mml:mi> </mml:mrow> </mml:mtd> </mml:mtr> <mml:mtr> <mml:mtd> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>s</mml:mi> <mml:mi>f</mml:mi> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>left ( {begin {array}{*{20}{c}} {rf} {sf} end {array} } right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> not trivially congruent to one another by elementary properties of number theory and call these representative binomial coefficients. A representative binomial coefficient is said to be of order <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=e> <mml:semantics> <mml:mi>e</mml:mi> <mml:annotation encoding=application/x-tex>e</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if and only if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis r comma s right-parenthesis equals 1> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>r</mml:mi> <mml:mo>,</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>(r,s) = 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=section-sign section-sign 3 minus 4> <mml:semantics> <mml:mrow> <mml:mi mathvariant=normal>§<!-- § --></mml:mi> <mml:mi mathvariant=normal>§<!-- § --></mml:mi> <mml:mn>3</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>S S 3-4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we show how the Davenport-Hasse relation [<bold>7</bold>], in a form given by Yamamoto [<bold>50</bold>], leads to determinations of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n Superscript left-parenthesis p minus 1 right-parenthesis slash m> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>(</mml:mo> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=false>)</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>m</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{n^{(p - 1)/m}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in terms of binomial coefficients modulo <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p equals e f plus 1 equals m n f plus 1> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mi>e</mml:mi> <mml:mi>f</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo>=</mml:mo> <mml:mi>m</mml:mi> <mml:mi>n</mml:mi> <mml:mi>f</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>p = ef + 1 = mnf + 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These results are of some interest in themselves and are used extensively in later sections of the paper. Making use of Theorem 5.1 relating Jacobi sums and binomial coefficients, which was first obtained in a slightly different form by Whiteman [<bold>45</bold>], we systematically investigate in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=section-sign section-sign 6 minus 21> <mml:semantics> <mml:mrow> <mml:mi mathvariant=normal>§<!-- § --></mml:mi> <mml:mi mathvariant=normal>§<!-- § --></mml:mi> <mml:mn>6</mml:mn> <mml:mo>−<!-- − --></mml:mo> <mml:mn>21</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>S S 6-21</mml:annotation> </mml:semantics> </mml:math> </inline-formula> all representative binomial coefficients of orders <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=e equals 3 comma 4 comma 6 comma 7 comma 8 comma 9 comma 11 comma 12 comma 14 comma 15 comma 16 comma 20> <mml:semantics> <mml:mrow> <mml:mi>e</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>6</mml:mn> <mml:mo>,</mml:mo> <mml:mn>7</mml:mn> <mml:mo>,</mml:mo> <mml:mn>8</mml:mn> <mml:mo>,</mml:mo> <mml:mn>9</mml:mn> <mml:mo>,</mml:mo> <mml:mn>11</mml:mn> <mml:mo>,</mml:mo> <mml:mn>12</mml:mn> <mml:mo>,</mml:mo> <mml:mn>14</mml:mn> <mml:mo>,</mml:mo> <mml:mn>15</mml:mn> <mml:mo>,</mml:mo> <mml:mn>16</mml:mn> <mml:mo>,</mml:mo> <mml:mn>20</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>e = 3,4,6,7,8,9,11,12,14,15,16,20</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=24> <mml:semantics> <mml:mn>24</mml:mn> <mml:annotation encoding=application/x-tex>24</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which we are able to determine explicitly in terms of the parameters in well-known binary quadratic forms, and all representative binomial coefficients of orders <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=e equals 5 comma 10 comma 13 comma 15 comma 16> <mml:semantics> <mml:mrow> <mml:mi>e</mml:mi> <mml:mo>=</mml:mo> <mml:mn>5</mml:mn> <mml:mo>,</mml:mo> <mml:mn>10</mml:mn> <mml:mo>,</mml:mo> <mml:mn>13</mml:mn> <mml:mo>,</mml:mo> <mml:mn>15</mml:mn> <mml:mo>,</mml:mo> <mml:mn>16</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>e = 5,10,13,15,16</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=20> <mml:semantics> <mml:mn>20</mml:mn> <mml:annotation encoding=application/x-tex>20</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which we are able to explicitly determine in terms of quaternary quadratic decompositions of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=16 p> <mml:semantics> <mml:mrow> <mml:mn>16</mml:mn> <mml:mi>p</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>16p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> given by Dickson [<bold>9</bold>], Zee [<bold>51</bold>] and Guidici, Muskat and Robinson [<bold>14</bold>]. Some of these results have been obtained by previous authors and many new ones are included. For <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=e equals 7> <mml:semantics> <mml:mrow> <mml:mi>e</mml:mi> <mml:mo>=</mml:mo> <mml:mn>7</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>e = 7</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=14> <mml:semantics> <mml:mn>14</mml:mn> <mml:annotation encoding=application/x-tex>14</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we are unable to explicitly determine representative binomial coefficients in terms of the six variable quadratic decomposition of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=72 p> <mml:semantics> <mml:mrow> <mml:mn>72</mml:mn> <mml:mi>p</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>72p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> given by Dickson [<bold>9</bold>] for reasons given in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=section-sign 10> <mml:semantics> <mml:mrow> <mml:mi mathvariant=normal>§<!-- § --></mml:mi> <mml:mn>10</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>S 10</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, but we are able to express these binomial coefficients in terms of the parameter <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=x 1> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{x_1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in this system in analogy to a recent result of Rajwade [<bold>34</bold>]. Finally, although a relatively rare occurrence for small <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=e> <mml:semantics> <mml:mi>e</mml:mi> <mml:annotation encoding=application/x-tex>e</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, it is possible for representative binomial coefficients of order <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=e> <mml:semantics> <mml:mi>e</mml:mi> <mml:annotation encoding=application/x-tex>e</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to be congruent to one another <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis mod p right-parenthesis> <mml:semantics> <mml:mrow> <mml:mspace width=0.667em /> <mml:mo stretchy=false>(</mml:mo> <mml:mi>mod</mml:mi> <mml:mspace width=0.333em /> <mml:mi>p</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>pmod p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Representative binomial coefficients which are congruent to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=plus-or-minus 1> <mml:semantics> <mml:mrow> <mml:mo>±<!-- ± --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>pm 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> times at least one other representative for all <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p equals e f plus 1> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mi>e</mml:mi> <mml:mi>f</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>p = ef + 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are called Cauchy-Whiteman type binomial coefficients for reasons given in [<bold>17</bold>] and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=section-sign 21> <mml:semantics> <mml:mrow> <mml:mi mathvariant=normal>§<!-- § --></mml:mi> <mml:mn>21</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>S 21</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. All congruences between such binomial coefficients are carefully examined and proved (with the sign ambiguity removed in each case) for all values of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=e> <mml:semantics> <mml:mi>e</mml:mi> <mml:annotation encoding=application/x-tex>e</mml:annotation> </mml:semantics> </mml:math> </inline-formula> considered. When <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=e equals 24> <mml:semantics> <mml:mrow> <mml:mi>e</mml:mi> <mml:mo>=</mml:mo> <mml:mn>24</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>e = 24</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there are <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=48> <mml:semantics> <mml:mn>48</mml:mn> <mml:annotation encoding=application/x-tex>48</mml:annotation> </mml:semantics> </mml:math> </inline-formula> representative binomial coefficients, including those of lower order, and it is shown in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=section-sign 21> <mml:semantics> <mml:mrow> <mml:mi mathvariant=normal>§<!-- § --></mml:mi> <mml:mn>21</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>S 21</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that an astonishing <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=43> <mml:semantics> <mml:mn>43</mml:mn> <mml:annotation encoding=application/x-tex>43</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of these are Cauchy-Whiteman type binomial coefficients. It is of particular interest that the sign ambiguity in many of these congruences does not arise from any expression of the form <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n Superscript left-parenthesis p minus 1 right-parenthesis slash m> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>(</mml:mo> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=false>)</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>m</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{n^{(p - 1)/m}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in contrast to the case for all <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=e greater-than 24> <mml:semantics> <mml:mrow> <mml:mi>e</mml:mi> <mml:mo>></mml:mo> <mml:mn>24</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>e > 24</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W2017339903 created "2016-06-24" @default.
- W2017339903 creator A5000794153 @default.
- W2017339903 creator A5056626858 @default.
- W2017339903 date "1984-01-01" @default.
- W2017339903 modified "2023-09-25" @default.
- W2017339903 title "Binomial coefficients and Jacobi sums" @default.
- W2017339903 cites W1030561078 @default.
- W2017339903 cites W1514546851 @default.
- W2017339903 cites W1518764525 @default.
- W2017339903 cites W1966940491 @default.
- W2017339903 cites W1972088966 @default.
- W2017339903 cites W1979740959 @default.
- W2017339903 cites W1987157023 @default.
- W2017339903 cites W1993102922 @default.
- W2017339903 cites W2013847220 @default.
- W2017339903 cites W2018928894 @default.
- W2017339903 cites W2019484439 @default.
- W2017339903 cites W2062291549 @default.
- W2017339903 cites W2065954801 @default.
- W2017339903 cites W2095610557 @default.
- W2017339903 cites W2111125351 @default.
- W2017339903 cites W2123940785 @default.
- W2017339903 cites W2133239494 @default.
- W2017339903 cites W2137344365 @default.
- W2017339903 cites W2146161595 @default.
- W2017339903 cites W2169820022 @default.
- W2017339903 cites W2319268367 @default.
- W2017339903 cites W3082356425 @default.
- W2017339903 cites W4214645761 @default.
- W2017339903 cites W4233256649 @default.
- W2017339903 cites W4233904117 @default.
- W2017339903 cites W4237897179 @default.
- W2017339903 cites W4242017499 @default.
- W2017339903 cites W4243113978 @default.
- W2017339903 cites W4243841398 @default.
- W2017339903 cites W4249003416 @default.
- W2017339903 cites W4254229644 @default.
- W2017339903 cites W4254924801 @default.
- W2017339903 cites W1234439838 @default.
- W2017339903 doi "https://doi.org/10.1090/s0002-9947-1984-0722761-x" @default.
- W2017339903 hasPublicationYear "1984" @default.
- W2017339903 type Work @default.
- W2017339903 sameAs 2017339903 @default.
- W2017339903 citedByCount "21" @default.
- W2017339903 countsByYear W20173399032014 @default.
- W2017339903 countsByYear W20173399032016 @default.
- W2017339903 crossrefType "journal-article" @default.
- W2017339903 hasAuthorship W2017339903A5000794153 @default.
- W2017339903 hasAuthorship W2017339903A5056626858 @default.
- W2017339903 hasBestOaLocation W20173399031 @default.
- W2017339903 hasConcept C100906024 @default.
- W2017339903 hasConcept C105795698 @default.
- W2017339903 hasConcept C118615104 @default.
- W2017339903 hasConcept C134087691 @default.
- W2017339903 hasConcept C139505817 @default.
- W2017339903 hasConcept C199335787 @default.
- W2017339903 hasConcept C2781315470 @default.
- W2017339903 hasConcept C28826006 @default.
- W2017339903 hasConcept C33923547 @default.
- W2017339903 hasConcept C34718186 @default.
- W2017339903 hasConceptScore W2017339903C100906024 @default.
- W2017339903 hasConceptScore W2017339903C105795698 @default.
- W2017339903 hasConceptScore W2017339903C118615104 @default.
- W2017339903 hasConceptScore W2017339903C134087691 @default.
- W2017339903 hasConceptScore W2017339903C139505817 @default.
- W2017339903 hasConceptScore W2017339903C199335787 @default.
- W2017339903 hasConceptScore W2017339903C2781315470 @default.
- W2017339903 hasConceptScore W2017339903C28826006 @default.
- W2017339903 hasConceptScore W2017339903C33923547 @default.
- W2017339903 hasConceptScore W2017339903C34718186 @default.
- W2017339903 hasIssue "2" @default.
- W2017339903 hasLocation W20173399031 @default.
- W2017339903 hasOpenAccess W2017339903 @default.
- W2017339903 hasPrimaryLocation W20173399031 @default.
- W2017339903 hasRelatedWork W1964070377 @default.
- W2017339903 hasRelatedWork W2044120033 @default.
- W2017339903 hasRelatedWork W2095157103 @default.
- W2017339903 hasRelatedWork W2172248153 @default.
- W2017339903 hasRelatedWork W2329936461 @default.
- W2017339903 hasRelatedWork W2404891737 @default.
- W2017339903 hasRelatedWork W2464170562 @default.
- W2017339903 hasRelatedWork W3003443399 @default.
- W2017339903 hasRelatedWork W4244653868 @default.
- W2017339903 hasRelatedWork W4256170887 @default.
- W2017339903 hasVolume "281" @default.
- W2017339903 isParatext "false" @default.
- W2017339903 isRetracted "false" @default.
- W2017339903 magId "2017339903" @default.
- W2017339903 workType "article" @default.