Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017353080> ?p ?o ?g. }
- W2017353080 endingPage "560" @default.
- W2017353080 startingPage "541" @default.
- W2017353080 abstract "The influence of nutrition, in terms of both quantity and quality, upon innate immune system competence (cellular defense mechanisms) was explored experimentally in eastern oysters, Crassostrea virginica. Oysters (ca. 50 mm shell height) were fed diets of two cultured microalgal strains, Tetraselmis chui strain PLY429 and Skeletonema costatum strain LB1077/1B, known to differ in biochemical composition—both alone and as a 50:50 mix—at two daily rations. Unfed controls also were included. After 5 weeks of feeding at 20 °C, the temperature was increased to 28 °C over 2 days, and the oysters were fed the same algal diets for one additional week. Dependent variables measured by flow cytometry, both before and after temperature increase, were hematological characteristics (relative percentages, sizes and granularities of four hemocyte types) and hemocyte defense-related activities (viability, aggregation and adherence, phagocytosis, and respiratory burst). Main effects and interactions of temperature increase, food quantity, and food quality upon each immunological variable were determined by ANOVA. Furthermore, Discriminant Analysis (DA) was applied to identify a suite of immunological parameters capable of differentiating oysters from the separate dietary treatments, and Principal Component Analysis (PCA) was used to characterize relationships between immunological variables. ANOVA of individual immunological variables revealed few significant main effects or interactions of food quantity, quality, and temperature increase; however, trends were apparent. A DA model, incorporating several immune function variables, differentiated oysters according to the food quantity and quality treatments from which they were taken. PCA revealed positive relationships between hemocyte phagocytosis and aggregation, which had a negative relationship with respiratory burst and mortality. Accordingly, we characterized “healthy” oyster immune capability as (1) highly aggregating and (2) phagocytic hemocytes with (3) low mortality and (4) low respiratory burst, and “unhealthy” immune function as the opposite. Temperature increase had a significant (p<0.05 ANOVA) effect upon the PCA profile, resulting in an increased respiratory burst and mortality and decreased phagocytosis and aggregation. Starved oysters showed the combined characteristics describing the “unhealthy” condition in the PCA. Moreover, the oysters fed different diets had different immune responses, as revealed by the PCA profiles, to the temperature elevation. These findings demonstrate that diet is important in the immune functions of oysters and that both starvation and high-temperature stress (sudden temperature elevation) change the immune system capability of oysters, thereby possibly making them more susceptible to disease and parasites." @default.
- W2017353080 created "2016-06-24" @default.
- W2017353080 creator A5000192329 @default.
- W2017353080 creator A5005612294 @default.
- W2017353080 creator A5007606496 @default.
- W2017353080 creator A5009297966 @default.
- W2017353080 creator A5016260742 @default.
- W2017353080 creator A5017644404 @default.
- W2017353080 creator A5050323925 @default.
- W2017353080 creator A5051216244 @default.
- W2017353080 creator A5060733190 @default.
- W2017353080 creator A5061108911 @default.
- W2017353080 creator A5067260568 @default.
- W2017353080 creator A5068612321 @default.
- W2017353080 date "2004-05-01" @default.
- W2017353080 modified "2023-10-16" @default.
- W2017353080 title "Immunological competence of eastern oysters, Crassostrea virginica, fed different microalgal diets and challenged with a temperature elevation" @default.
- W2017353080 cites W1515985097 @default.
- W2017353080 cites W1971487060 @default.
- W2017353080 cites W1972991407 @default.
- W2017353080 cites W1976984443 @default.
- W2017353080 cites W1979235420 @default.
- W2017353080 cites W1991540128 @default.
- W2017353080 cites W1994899213 @default.
- W2017353080 cites W1999314869 @default.
- W2017353080 cites W2004138679 @default.
- W2017353080 cites W2026117073 @default.
- W2017353080 cites W2035925207 @default.
- W2017353080 cites W2042150833 @default.
- W2017353080 cites W2045236741 @default.
- W2017353080 cites W2052833165 @default.
- W2017353080 cites W2055351039 @default.
- W2017353080 cites W2060142454 @default.
- W2017353080 cites W2066453280 @default.
- W2017353080 cites W2070674352 @default.
- W2017353080 cites W2079125608 @default.
- W2017353080 cites W2089297156 @default.
- W2017353080 cites W2090826187 @default.
- W2017353080 cites W2153088242 @default.
- W2017353080 cites W2160600093 @default.
- W2017353080 cites W2579772765 @default.
- W2017353080 doi "https://doi.org/10.1016/j.aquaculture.2004.01.010" @default.
- W2017353080 hasPublicationYear "2004" @default.
- W2017353080 type Work @default.
- W2017353080 sameAs 2017353080 @default.
- W2017353080 citedByCount "62" @default.
- W2017353080 countsByYear W20173530802012 @default.
- W2017353080 countsByYear W20173530802013 @default.
- W2017353080 countsByYear W20173530802014 @default.
- W2017353080 countsByYear W20173530802015 @default.
- W2017353080 countsByYear W20173530802016 @default.
- W2017353080 countsByYear W20173530802017 @default.
- W2017353080 countsByYear W20173530802018 @default.
- W2017353080 countsByYear W20173530802019 @default.
- W2017353080 countsByYear W20173530802020 @default.
- W2017353080 countsByYear W20173530802021 @default.
- W2017353080 countsByYear W20173530802022 @default.
- W2017353080 countsByYear W20173530802023 @default.
- W2017353080 crossrefType "journal-article" @default.
- W2017353080 hasAuthorship W2017353080A5000192329 @default.
- W2017353080 hasAuthorship W2017353080A5005612294 @default.
- W2017353080 hasAuthorship W2017353080A5007606496 @default.
- W2017353080 hasAuthorship W2017353080A5009297966 @default.
- W2017353080 hasAuthorship W2017353080A5016260742 @default.
- W2017353080 hasAuthorship W2017353080A5017644404 @default.
- W2017353080 hasAuthorship W2017353080A5050323925 @default.
- W2017353080 hasAuthorship W2017353080A5051216244 @default.
- W2017353080 hasAuthorship W2017353080A5060733190 @default.
- W2017353080 hasAuthorship W2017353080A5061108911 @default.
- W2017353080 hasAuthorship W2017353080A5067260568 @default.
- W2017353080 hasAuthorship W2017353080A5068612321 @default.
- W2017353080 hasConcept C136449434 @default.
- W2017353080 hasConcept C140793950 @default.
- W2017353080 hasConcept C158278297 @default.
- W2017353080 hasConcept C18903297 @default.
- W2017353080 hasConcept C203014093 @default.
- W2017353080 hasConcept C2776364969 @default.
- W2017353080 hasConcept C2776845067 @default.
- W2017353080 hasConcept C2779064894 @default.
- W2017353080 hasConcept C2780600097 @default.
- W2017353080 hasConcept C2781028344 @default.
- W2017353080 hasConcept C2909208804 @default.
- W2017353080 hasConcept C31903555 @default.
- W2017353080 hasConcept C505870484 @default.
- W2017353080 hasConcept C559758991 @default.
- W2017353080 hasConcept C86803240 @default.
- W2017353080 hasConcept C86909935 @default.
- W2017353080 hasConcept C8891405 @default.
- W2017353080 hasConcept C89423630 @default.
- W2017353080 hasConcept C90856448 @default.
- W2017353080 hasConceptScore W2017353080C136449434 @default.
- W2017353080 hasConceptScore W2017353080C140793950 @default.
- W2017353080 hasConceptScore W2017353080C158278297 @default.
- W2017353080 hasConceptScore W2017353080C18903297 @default.
- W2017353080 hasConceptScore W2017353080C203014093 @default.
- W2017353080 hasConceptScore W2017353080C2776364969 @default.
- W2017353080 hasConceptScore W2017353080C2776845067 @default.
- W2017353080 hasConceptScore W2017353080C2779064894 @default.