Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017359672> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2017359672 abstract "Traditional artificial intelligence (AI) research has concentrated mostly on modeling high-level thought processes such as problem-solving and planning, and high-level representations such as rule-based heuristics and frame-based knowledge structures. Massively parallel networks, on the other hand, have been used mainly to model low-level perceptual processes such as vision, speech, associative memory, and learning. Recent research has started to bridge the gap between these disciplines. Massively parallel networks have many representational and computational advantages to bring to traditional AI work. These networks are very good at filling in partial information and at learning and representing subtle relationships among concepts. In addition, they provide a means to tightly integrate information from different sources as well as a model to encode parallel processing. However, many difficult issues need to be solved before massively parallel techniques can become more applicable and be able to complement traditional AI techniques. These issues include the problem of variable binding, multiple instantiations of knowledge structures, recursion, hierarchical abstraction, and temporal constraints.These problems are explored in this thesis through the presentation of massively parallel models for schema structures, an approach to defining knowledge modules, and a model to represent rules. The massively parallel representational techniques introduced in this thesis include a representation of constraints which has been used to model schemata with temporal sequence constraints, a representation of modular knowledge structures that have been used to model adaptive competition as well as interactions among higher-order concepts, a hybrid schema representation which combines connectionist value-passing with marker passing, and a hybrid natural language rule-based system. These techniques have been implemented and successfully tested in applications such as speech recognition and natural language understanding." @default.
- W2017359672 created "2016-06-24" @default.
- W2017359672 creator A5008116509 @default.
- W2017359672 creator A5022231549 @default.
- W2017359672 date "1987-01-01" @default.
- W2017359672 modified "2023-09-24" @default.
- W2017359672 title "Representing high-level knowledge structures in massively parallel networks" @default.
- W2017359672 hasPublicationYear "1987" @default.
- W2017359672 type Work @default.
- W2017359672 sameAs 2017359672 @default.
- W2017359672 citedByCount "1" @default.
- W2017359672 crossrefType "journal-article" @default.
- W2017359672 hasAuthorship W2017359672A5008116509 @default.
- W2017359672 hasAuthorship W2017359672A5022231549 @default.
- W2017359672 hasConcept C111919701 @default.
- W2017359672 hasConcept C119857082 @default.
- W2017359672 hasConcept C127705205 @default.
- W2017359672 hasConcept C154945302 @default.
- W2017359672 hasConcept C173608175 @default.
- W2017359672 hasConcept C190475519 @default.
- W2017359672 hasConcept C41008148 @default.
- W2017359672 hasConcept C50644808 @default.
- W2017359672 hasConcept C52146309 @default.
- W2017359672 hasConcept C80444323 @default.
- W2017359672 hasConcept C8521452 @default.
- W2017359672 hasConceptScore W2017359672C111919701 @default.
- W2017359672 hasConceptScore W2017359672C119857082 @default.
- W2017359672 hasConceptScore W2017359672C127705205 @default.
- W2017359672 hasConceptScore W2017359672C154945302 @default.
- W2017359672 hasConceptScore W2017359672C173608175 @default.
- W2017359672 hasConceptScore W2017359672C190475519 @default.
- W2017359672 hasConceptScore W2017359672C41008148 @default.
- W2017359672 hasConceptScore W2017359672C50644808 @default.
- W2017359672 hasConceptScore W2017359672C52146309 @default.
- W2017359672 hasConceptScore W2017359672C80444323 @default.
- W2017359672 hasConceptScore W2017359672C8521452 @default.
- W2017359672 hasLocation W20173596721 @default.
- W2017359672 hasOpenAccess W2017359672 @default.
- W2017359672 hasPrimaryLocation W20173596721 @default.
- W2017359672 hasRelatedWork W147189469 @default.
- W2017359672 hasRelatedWork W1504310929 @default.
- W2017359672 hasRelatedWork W2022363644 @default.
- W2017359672 hasRelatedWork W2047788510 @default.
- W2017359672 hasRelatedWork W2048942822 @default.
- W2017359672 hasRelatedWork W2058764871 @default.
- W2017359672 hasRelatedWork W2112251349 @default.
- W2017359672 hasRelatedWork W2115706856 @default.
- W2017359672 hasRelatedWork W2118929185 @default.
- W2017359672 hasRelatedWork W2133367505 @default.
- W2017359672 hasRelatedWork W2294636104 @default.
- W2017359672 hasRelatedWork W2516638674 @default.
- W2017359672 hasRelatedWork W2525340867 @default.
- W2017359672 hasRelatedWork W2568736539 @default.
- W2017359672 hasRelatedWork W2589843926 @default.
- W2017359672 hasRelatedWork W2803343605 @default.
- W2017359672 hasRelatedWork W2948844445 @default.
- W2017359672 hasRelatedWork W2995936239 @default.
- W2017359672 hasRelatedWork W3134171575 @default.
- W2017359672 hasRelatedWork W853275576 @default.
- W2017359672 isParatext "false" @default.
- W2017359672 isRetracted "false" @default.
- W2017359672 magId "2017359672" @default.
- W2017359672 workType "article" @default.