Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017372632> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2017372632 abstract "This paper proposes a trainable computer vision approach for visual object registration relative to a collection of training images obtained a priori. The algorithm first identifies whether or not the image belongs to the scene location, and should it belong, it will identify objects of interest within the image and geo-register them. To accomplish this task, the processing chain relies on 3-D structure derived from motion to represent feature locations in a proposed model. Using current state-of- the-art algorithms, detected objects are extracted and their two-dimensional sizes in pixel quantities are converted into relative 3-D real-world coordinates using scene information, homography, and camera geometry. Locations can then be given with distance alignment information. The tasks can be accomplished in an efficient manner. Finally, algorithmic evaluation is presented with receiver operating characteristics, computational analysis, and registration errors in physical distances." @default.
- W2017372632 created "2016-06-24" @default.
- W2017372632 creator A5001857810 @default.
- W2017372632 creator A5079007814 @default.
- W2017372632 creator A5085248097 @default.
- W2017372632 creator A5089078059 @default.
- W2017372632 date "2010-02-04" @default.
- W2017372632 modified "2023-09-23" @default.
- W2017372632 title "Construction and exploitation of a 3D model from 2D image features" @default.
- W2017372632 doi "https://doi.org/10.1117/12.849919" @default.
- W2017372632 hasPublicationYear "2010" @default.
- W2017372632 type Work @default.
- W2017372632 sameAs 2017372632 @default.
- W2017372632 citedByCount "3" @default.
- W2017372632 countsByYear W20173726322013 @default.
- W2017372632 countsByYear W20173726322016 @default.
- W2017372632 countsByYear W20173726322018 @default.
- W2017372632 crossrefType "proceedings-article" @default.
- W2017372632 hasAuthorship W2017372632A5001857810 @default.
- W2017372632 hasAuthorship W2017372632A5079007814 @default.
- W2017372632 hasAuthorship W2017372632A5085248097 @default.
- W2017372632 hasAuthorship W2017372632A5089078059 @default.
- W2017372632 hasBestOaLocation W20173726322 @default.
- W2017372632 hasConcept C105795698 @default.
- W2017372632 hasConcept C111472728 @default.
- W2017372632 hasConcept C115961682 @default.
- W2017372632 hasConcept C138885662 @default.
- W2017372632 hasConcept C153180895 @default.
- W2017372632 hasConcept C154945302 @default.
- W2017372632 hasConcept C160633673 @default.
- W2017372632 hasConcept C162324750 @default.
- W2017372632 hasConcept C177846678 @default.
- W2017372632 hasConcept C187736073 @default.
- W2017372632 hasConcept C2776401178 @default.
- W2017372632 hasConcept C2780451532 @default.
- W2017372632 hasConcept C2781238097 @default.
- W2017372632 hasConcept C28751775 @default.
- W2017372632 hasConcept C31972630 @default.
- W2017372632 hasConcept C33923547 @default.
- W2017372632 hasConcept C41008148 @default.
- W2017372632 hasConcept C41895202 @default.
- W2017372632 hasConcept C75280867 @default.
- W2017372632 hasConcept C75553542 @default.
- W2017372632 hasConceptScore W2017372632C105795698 @default.
- W2017372632 hasConceptScore W2017372632C111472728 @default.
- W2017372632 hasConceptScore W2017372632C115961682 @default.
- W2017372632 hasConceptScore W2017372632C138885662 @default.
- W2017372632 hasConceptScore W2017372632C153180895 @default.
- W2017372632 hasConceptScore W2017372632C154945302 @default.
- W2017372632 hasConceptScore W2017372632C160633673 @default.
- W2017372632 hasConceptScore W2017372632C162324750 @default.
- W2017372632 hasConceptScore W2017372632C177846678 @default.
- W2017372632 hasConceptScore W2017372632C187736073 @default.
- W2017372632 hasConceptScore W2017372632C2776401178 @default.
- W2017372632 hasConceptScore W2017372632C2780451532 @default.
- W2017372632 hasConceptScore W2017372632C2781238097 @default.
- W2017372632 hasConceptScore W2017372632C28751775 @default.
- W2017372632 hasConceptScore W2017372632C31972630 @default.
- W2017372632 hasConceptScore W2017372632C33923547 @default.
- W2017372632 hasConceptScore W2017372632C41008148 @default.
- W2017372632 hasConceptScore W2017372632C41895202 @default.
- W2017372632 hasConceptScore W2017372632C75280867 @default.
- W2017372632 hasConceptScore W2017372632C75553542 @default.
- W2017372632 hasLocation W20173726321 @default.
- W2017372632 hasLocation W20173726322 @default.
- W2017372632 hasOpenAccess W2017372632 @default.
- W2017372632 hasPrimaryLocation W20173726321 @default.
- W2017372632 hasRelatedWork W1772255401 @default.
- W2017372632 hasRelatedWork W1868689119 @default.
- W2017372632 hasRelatedWork W1966410754 @default.
- W2017372632 hasRelatedWork W2023157959 @default.
- W2017372632 hasRelatedWork W2090093270 @default.
- W2017372632 hasRelatedWork W2092957489 @default.
- W2017372632 hasRelatedWork W2554642673 @default.
- W2017372632 hasRelatedWork W4225711786 @default.
- W2017372632 hasRelatedWork W4308948894 @default.
- W2017372632 hasRelatedWork W2561510925 @default.
- W2017372632 isParatext "false" @default.
- W2017372632 isRetracted "false" @default.
- W2017372632 magId "2017372632" @default.
- W2017372632 workType "article" @default.