Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017379056> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2017379056 endingPage "831" @default.
- W2017379056 startingPage "827" @default.
- W2017379056 abstract "The available empirical remote sensing techniques for harmful algal bloom (HAB) detection are reliant on prior observations and thresholds. These techniques tend to give high false alarm rate, as they are limited in spatiotemporal contextual information and decision combination techniques. We propose a multistage learning based ensemble methodology addressing the above constraints for performance improvement of HAB detection. Machine learning-based spatiotemporal data mining approach, along with empirical relationships, is used for HAB detection in the first stage of the ensemble, to exploit the potential benefits of each individual detection technique. The decision outputs from these detection techniques are fused in the second stage using nonlinear modeling-based combination techniques unlike conventional weighted averages. The proposed ensemble methodology outperforms all of the individual members and gave a significant overall performance improvement up to 0.8632 kappa accuracy. The performance is evaluated over tenfold cross validation average and compared against various ensemble methods and combination techniques." @default.
- W2017379056 created "2016-06-24" @default.
- W2017379056 creator A5006305846 @default.
- W2017379056 creator A5042802565 @default.
- W2017379056 creator A5052217638 @default.
- W2017379056 creator A5075380767 @default.
- W2017379056 date "2012-09-01" @default.
- W2017379056 modified "2023-10-14" @default.
- W2017379056 title "Ensemble Methodology Using Multistage Learning for Improved Detection of Harmful Algal Blooms" @default.
- W2017379056 cites W1964168965 @default.
- W2017379056 cites W1977142525 @default.
- W2017379056 cites W2004014581 @default.
- W2017379056 cites W2035651361 @default.
- W2017379056 cites W2056913856 @default.
- W2017379056 cites W2088265251 @default.
- W2017379056 cites W2089167668 @default.
- W2017379056 cites W2112803241 @default.
- W2017379056 cites W2114830926 @default.
- W2017379056 cites W2114866007 @default.
- W2017379056 cites W2135293965 @default.
- W2017379056 doi "https://doi.org/10.1109/lgrs.2011.2182032" @default.
- W2017379056 hasPublicationYear "2012" @default.
- W2017379056 type Work @default.
- W2017379056 sameAs 2017379056 @default.
- W2017379056 citedByCount "17" @default.
- W2017379056 countsByYear W20173790562013 @default.
- W2017379056 countsByYear W20173790562015 @default.
- W2017379056 countsByYear W20173790562017 @default.
- W2017379056 countsByYear W20173790562018 @default.
- W2017379056 countsByYear W20173790562019 @default.
- W2017379056 countsByYear W20173790562020 @default.
- W2017379056 countsByYear W20173790562021 @default.
- W2017379056 countsByYear W20173790562022 @default.
- W2017379056 crossrefType "journal-article" @default.
- W2017379056 hasAuthorship W2017379056A5006305846 @default.
- W2017379056 hasAuthorship W2017379056A5042802565 @default.
- W2017379056 hasAuthorship W2017379056A5052217638 @default.
- W2017379056 hasAuthorship W2017379056A5075380767 @default.
- W2017379056 hasConcept C119857082 @default.
- W2017379056 hasConcept C120305227 @default.
- W2017379056 hasConcept C124101348 @default.
- W2017379056 hasConcept C142796444 @default.
- W2017379056 hasConcept C153180895 @default.
- W2017379056 hasConcept C154945302 @default.
- W2017379056 hasConcept C165696696 @default.
- W2017379056 hasConcept C178790620 @default.
- W2017379056 hasConcept C185592680 @default.
- W2017379056 hasConcept C2776836416 @default.
- W2017379056 hasConcept C2780892065 @default.
- W2017379056 hasConcept C38652104 @default.
- W2017379056 hasConcept C41008148 @default.
- W2017379056 hasConcept C45942800 @default.
- W2017379056 hasConcept C77052588 @default.
- W2017379056 hasConceptScore W2017379056C119857082 @default.
- W2017379056 hasConceptScore W2017379056C120305227 @default.
- W2017379056 hasConceptScore W2017379056C124101348 @default.
- W2017379056 hasConceptScore W2017379056C142796444 @default.
- W2017379056 hasConceptScore W2017379056C153180895 @default.
- W2017379056 hasConceptScore W2017379056C154945302 @default.
- W2017379056 hasConceptScore W2017379056C165696696 @default.
- W2017379056 hasConceptScore W2017379056C178790620 @default.
- W2017379056 hasConceptScore W2017379056C185592680 @default.
- W2017379056 hasConceptScore W2017379056C2776836416 @default.
- W2017379056 hasConceptScore W2017379056C2780892065 @default.
- W2017379056 hasConceptScore W2017379056C38652104 @default.
- W2017379056 hasConceptScore W2017379056C41008148 @default.
- W2017379056 hasConceptScore W2017379056C45942800 @default.
- W2017379056 hasConceptScore W2017379056C77052588 @default.
- W2017379056 hasIssue "5" @default.
- W2017379056 hasLocation W20173790561 @default.
- W2017379056 hasOpenAccess W2017379056 @default.
- W2017379056 hasPrimaryLocation W20173790561 @default.
- W2017379056 hasRelatedWork W2003125512 @default.
- W2017379056 hasRelatedWork W2017379056 @default.
- W2017379056 hasRelatedWork W3156954554 @default.
- W2017379056 hasRelatedWork W4281757034 @default.
- W2017379056 hasRelatedWork W4285046548 @default.
- W2017379056 hasRelatedWork W4285741730 @default.
- W2017379056 hasRelatedWork W4292969247 @default.
- W2017379056 hasRelatedWork W4312241010 @default.
- W2017379056 hasRelatedWork W4313488044 @default.
- W2017379056 hasRelatedWork W94923625 @default.
- W2017379056 hasVolume "9" @default.
- W2017379056 isParatext "false" @default.
- W2017379056 isRetracted "false" @default.
- W2017379056 magId "2017379056" @default.
- W2017379056 workType "article" @default.