Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017397761> ?p ?o ?g. }
- W2017397761 endingPage "1582" @default.
- W2017397761 startingPage "1575" @default.
- W2017397761 abstract "This work presents a dynamic artificial neural network methodology, which classifies the proteins into their classes from their sequences alone: the lysosomal membrane protein classes and the various other membranes protein classes. In this paper, neural networks-based lysosomal-associated membrane protein type prediction system is proposed. Different protein sequence representations are fused to extract the features of a protein sequence, which includes seven feature sets; amino acid (AA) composition, sequence length, hydrophobic group, electronic group, sum of hydrophobicity, R-group, and dipeptide composition. To reduce the dimensionality of the large feature vector, we applied the principal component analysis. The probabilistic neural network, generalized regression neural network, and Elman regression neural network (RNN) are used as classifiers and compared with layer recurrent network (LRN), a dynamic network. The dynamic networks have memory, i.e. its output depends not only on the input but the previous outputs also. Thus, the accuracy of LRN classifier among all other artificial neural networks comes out to be the highest. The overall accuracy of jackknife cross-validation is 93.2% for the data-set. These predicted results suggest that the method can be effectively applied to discriminate lysosomal associated membrane proteins from other membrane proteins (Type-I, Outer membrane proteins, GPI-Anchored) and Globular proteins, and it also indicates that the protein sequence representation can better reflect the core feature of membrane proteins than the classical AA composition." @default.
- W2017397761 created "2016-06-24" @default.
- W2017397761 creator A5049825416 @default.
- W2017397761 creator A5080166472 @default.
- W2017397761 date "2013-08-22" @default.
- W2017397761 modified "2023-09-26" @default.
- W2017397761 title "Discriminating lysosomal membrane protein types using dynamic neural network" @default.
- W2017397761 cites W1964168965 @default.
- W2017397761 cites W1978136924 @default.
- W2017397761 cites W1986913015 @default.
- W2017397761 cites W1993522696 @default.
- W2017397761 cites W2001028520 @default.
- W2017397761 cites W2005360706 @default.
- W2017397761 cites W2018235493 @default.
- W2017397761 cites W2024767324 @default.
- W2017397761 cites W2026582002 @default.
- W2017397761 cites W2036956828 @default.
- W2017397761 cites W2040033996 @default.
- W2017397761 cites W2045088880 @default.
- W2017397761 cites W2057021995 @default.
- W2017397761 cites W2093577984 @default.
- W2017397761 cites W2106141559 @default.
- W2017397761 cites W2110485445 @default.
- W2017397761 cites W2114010544 @default.
- W2017397761 cites W2145957695 @default.
- W2017397761 cites W2146241755 @default.
- W2017397761 cites W2149730127 @default.
- W2017397761 cites W3025428150 @default.
- W2017397761 doi "https://doi.org/10.1080/07391102.2013.827133" @default.
- W2017397761 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23968467" @default.
- W2017397761 hasPublicationYear "2013" @default.
- W2017397761 type Work @default.
- W2017397761 sameAs 2017397761 @default.
- W2017397761 citedByCount "7" @default.
- W2017397761 countsByYear W20173977612014 @default.
- W2017397761 countsByYear W20173977612015 @default.
- W2017397761 countsByYear W20173977612016 @default.
- W2017397761 countsByYear W20173977612022 @default.
- W2017397761 crossrefType "journal-article" @default.
- W2017397761 hasAuthorship W2017397761A5049825416 @default.
- W2017397761 hasAuthorship W2017397761A5080166472 @default.
- W2017397761 hasConcept C10010492 @default.
- W2017397761 hasConcept C104317684 @default.
- W2017397761 hasConcept C119857082 @default.
- W2017397761 hasConcept C134342201 @default.
- W2017397761 hasConcept C144647389 @default.
- W2017397761 hasConcept C153180895 @default.
- W2017397761 hasConcept C154945302 @default.
- W2017397761 hasConcept C167625842 @default.
- W2017397761 hasConcept C175202392 @default.
- W2017397761 hasConcept C186060115 @default.
- W2017397761 hasConcept C27438332 @default.
- W2017397761 hasConcept C2779138802 @default.
- W2017397761 hasConcept C2780362125 @default.
- W2017397761 hasConcept C41008148 @default.
- W2017397761 hasConcept C41625074 @default.
- W2017397761 hasConcept C50644808 @default.
- W2017397761 hasConcept C515207424 @default.
- W2017397761 hasConcept C55493867 @default.
- W2017397761 hasConcept C83665646 @default.
- W2017397761 hasConcept C86803240 @default.
- W2017397761 hasConceptScore W2017397761C10010492 @default.
- W2017397761 hasConceptScore W2017397761C104317684 @default.
- W2017397761 hasConceptScore W2017397761C119857082 @default.
- W2017397761 hasConceptScore W2017397761C134342201 @default.
- W2017397761 hasConceptScore W2017397761C144647389 @default.
- W2017397761 hasConceptScore W2017397761C153180895 @default.
- W2017397761 hasConceptScore W2017397761C154945302 @default.
- W2017397761 hasConceptScore W2017397761C167625842 @default.
- W2017397761 hasConceptScore W2017397761C175202392 @default.
- W2017397761 hasConceptScore W2017397761C186060115 @default.
- W2017397761 hasConceptScore W2017397761C27438332 @default.
- W2017397761 hasConceptScore W2017397761C2779138802 @default.
- W2017397761 hasConceptScore W2017397761C2780362125 @default.
- W2017397761 hasConceptScore W2017397761C41008148 @default.
- W2017397761 hasConceptScore W2017397761C41625074 @default.
- W2017397761 hasConceptScore W2017397761C50644808 @default.
- W2017397761 hasConceptScore W2017397761C515207424 @default.
- W2017397761 hasConceptScore W2017397761C55493867 @default.
- W2017397761 hasConceptScore W2017397761C83665646 @default.
- W2017397761 hasConceptScore W2017397761C86803240 @default.
- W2017397761 hasIssue "10" @default.
- W2017397761 hasLocation W20173977611 @default.
- W2017397761 hasLocation W20173977612 @default.
- W2017397761 hasOpenAccess W2017397761 @default.
- W2017397761 hasPrimaryLocation W20173977611 @default.
- W2017397761 hasRelatedWork W1979289657 @default.
- W2017397761 hasRelatedWork W2017397761 @default.
- W2017397761 hasRelatedWork W2048748574 @default.
- W2017397761 hasRelatedWork W2090269531 @default.
- W2017397761 hasRelatedWork W2355203151 @default.
- W2017397761 hasRelatedWork W2378822276 @default.
- W2017397761 hasRelatedWork W2762389725 @default.
- W2017397761 hasRelatedWork W2798421191 @default.
- W2017397761 hasRelatedWork W94476185 @default.
- W2017397761 hasRelatedWork W2137598809 @default.
- W2017397761 hasVolume "32" @default.
- W2017397761 isParatext "false" @default.