Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017408522> ?p ?o ?g. }
- W2017408522 endingPage "557" @default.
- W2017408522 startingPage "541" @default.
- W2017408522 abstract "An array of biomagnetometers may be used to measure the spatio-temporal neuromagnetic field or magnetoencephalogram (MEG) produced by neural activity in the brain. A popular model for the neural activity produced in response to a given sensory stimulus is a set of current dipoles, where each dipole represents the primary current associated with the combined activation of a large number of neurons located in a small volume of the brain. An important problem in the interpretation of MEG data from evoked response experiments is the localization of these neural current dipoles. We present here a linear algebraic framework for three common spatio-temporal dipole models: i) unconstrained dipoles, ii) dipoles with a fixed location, and iii) dipoles with a fixed orientation and location. In all cases, we assume that the location, orientation, and magnitude of the dipoles are unknown. With a common model, we show how the parameter estimation problem may be decomposed into the estimation of the time invariant parameters using nonlinear least-squares minimization, followed by linear estimation of the associated time varying parameters. A subspace formulation is presented and used to derive a suboptimal least-squares subspace scanning method. The resulting algorithm is a special case of the well-known MUltiple SIgnal Classification (MUSIC) method, in which the solution (multiple dipole locations) is found by scanning potential locations using a simple one dipole model. Principal components analysis (PCA) dipole fitting has also been used to individually fit single dipoles in a multiple dipole problem. Analysis is presented here to show why PCA dipole fitting will fail in general, whereas the subspace method presented here will generally succeed. Numerically efficient means of calculating the cost functions are presented, and problems of model order selection and missing moments are discussed. Results from a simulation and a somatosensory experiment are presented." @default.
- W2017408522 created "2016-06-24" @default.
- W2017408522 creator A5041475859 @default.
- W2017408522 creator A5054387045 @default.
- W2017408522 creator A5089485035 @default.
- W2017408522 date "1992-06-01" @default.
- W2017408522 modified "2023-10-10" @default.
- W2017408522 title "Multiple dipole modeling and localization from spatio-temporal MEG data" @default.
- W2017408522 cites W133977063 @default.
- W2017408522 cites W1831233010 @default.
- W2017408522 cites W1963544757 @default.
- W2017408522 cites W1968613074 @default.
- W2017408522 cites W1971370461 @default.
- W2017408522 cites W1984468801 @default.
- W2017408522 cites W1985825653 @default.
- W2017408522 cites W1987275894 @default.
- W2017408522 cites W1987333243 @default.
- W2017408522 cites W1990493255 @default.
- W2017408522 cites W1996914019 @default.
- W2017408522 cites W2018089423 @default.
- W2017408522 cites W2022173497 @default.
- W2017408522 cites W2022351663 @default.
- W2017408522 cites W2024688404 @default.
- W2017408522 cites W2039086247 @default.
- W2017408522 cites W2050986635 @default.
- W2017408522 cites W2059147492 @default.
- W2017408522 cites W2060837608 @default.
- W2017408522 cites W2082632184 @default.
- W2017408522 cites W2090347670 @default.
- W2017408522 cites W2096217494 @default.
- W2017408522 cites W2101658087 @default.
- W2017408522 cites W2113638573 @default.
- W2017408522 cites W2134175340 @default.
- W2017408522 cites W2151517138 @default.
- W2017408522 cites W2171908478 @default.
- W2017408522 cites W2180096704 @default.
- W2017408522 cites W4211026488 @default.
- W2017408522 doi "https://doi.org/10.1109/10.141192" @default.
- W2017408522 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/1601435" @default.
- W2017408522 hasPublicationYear "1992" @default.
- W2017408522 type Work @default.
- W2017408522 sameAs 2017408522 @default.
- W2017408522 citedByCount "996" @default.
- W2017408522 countsByYear W20174085222012 @default.
- W2017408522 countsByYear W20174085222013 @default.
- W2017408522 countsByYear W20174085222014 @default.
- W2017408522 countsByYear W20174085222015 @default.
- W2017408522 countsByYear W20174085222016 @default.
- W2017408522 countsByYear W20174085222017 @default.
- W2017408522 countsByYear W20174085222018 @default.
- W2017408522 countsByYear W20174085222019 @default.
- W2017408522 countsByYear W20174085222020 @default.
- W2017408522 countsByYear W20174085222021 @default.
- W2017408522 countsByYear W20174085222022 @default.
- W2017408522 countsByYear W20174085222023 @default.
- W2017408522 crossrefType "journal-article" @default.
- W2017408522 hasAuthorship W2017408522A5041475859 @default.
- W2017408522 hasAuthorship W2017408522A5054387045 @default.
- W2017408522 hasAuthorship W2017408522A5089485035 @default.
- W2017408522 hasConcept C11413529 @default.
- W2017408522 hasConcept C121332964 @default.
- W2017408522 hasConcept C153180895 @default.
- W2017408522 hasConcept C154945302 @default.
- W2017408522 hasConcept C16345878 @default.
- W2017408522 hasConcept C169760540 @default.
- W2017408522 hasConcept C173523689 @default.
- W2017408522 hasConcept C2524010 @default.
- W2017408522 hasConcept C27438332 @default.
- W2017408522 hasConcept C32834561 @default.
- W2017408522 hasConcept C33923547 @default.
- W2017408522 hasConcept C41008148 @default.
- W2017408522 hasConcept C522805319 @default.
- W2017408522 hasConcept C556910895 @default.
- W2017408522 hasConcept C62520636 @default.
- W2017408522 hasConcept C86803240 @default.
- W2017408522 hasConceptScore W2017408522C11413529 @default.
- W2017408522 hasConceptScore W2017408522C121332964 @default.
- W2017408522 hasConceptScore W2017408522C153180895 @default.
- W2017408522 hasConceptScore W2017408522C154945302 @default.
- W2017408522 hasConceptScore W2017408522C16345878 @default.
- W2017408522 hasConceptScore W2017408522C169760540 @default.
- W2017408522 hasConceptScore W2017408522C173523689 @default.
- W2017408522 hasConceptScore W2017408522C2524010 @default.
- W2017408522 hasConceptScore W2017408522C27438332 @default.
- W2017408522 hasConceptScore W2017408522C32834561 @default.
- W2017408522 hasConceptScore W2017408522C33923547 @default.
- W2017408522 hasConceptScore W2017408522C41008148 @default.
- W2017408522 hasConceptScore W2017408522C522805319 @default.
- W2017408522 hasConceptScore W2017408522C556910895 @default.
- W2017408522 hasConceptScore W2017408522C62520636 @default.
- W2017408522 hasConceptScore W2017408522C86803240 @default.
- W2017408522 hasIssue "6" @default.
- W2017408522 hasLocation W20174085221 @default.
- W2017408522 hasLocation W20174085222 @default.
- W2017408522 hasOpenAccess W2017408522 @default.
- W2017408522 hasPrimaryLocation W20174085221 @default.
- W2017408522 hasRelatedWork W1653333864 @default.
- W2017408522 hasRelatedWork W2013261033 @default.