Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017444807> ?p ?o ?g. }
- W2017444807 endingPage "80" @default.
- W2017444807 startingPage "58" @default.
- W2017444807 abstract "The impact of different forestry practices on headwater streams in the wet tropics is a serious environmental concern. Despite this, there are very few experimental catchment studies that quantify the hydrological impacts of specific tropical forestry operations. While new field studies are imperative, more could be gained from existing catchment studies by extracting information from the available time-series. Data Based Mechanistic (DBM) models can be used to extract hydrological information from such time-series by fitting a range of Transfer Function models using the simplified recursive instrumental variable (SRIV) algorithm and without a priori assumptions about the water pathways. An optimal model and its associated hydrological system parameters are then identified from objective statistical measures (e.g. Rt2, YIC) and only then by selection of that model with the most plausible physical explanation. While the DBM method has been applied to the relationship between rainfall input and streamflow output in tropical rainforests, it has never been used to simultaneously examine the relationships within rainfall–streamflow data and the component water pathways of overland flow, subsurface flow and transpiration. Modelling these component pathways is important to the understanding of likely changes in the rainfall–streamflow behaviour resulting from tropical forestry. We aim to show the value of our multiple component DBM models to simulate the sensitivity of stream behaviour to different densities of skidder vehicle trails within a managed rainforest in Borneo. The first application of DBM modelling to the component water pathways of an equatorial rainforest catchment shows that the overall rainfall–streamflow response is flashy, with a residence time of 36.25 ± 0.19 min, when compared to other small catchments, but on minor aquifers. The overall response is, however, much less flashy in comparison to the infiltration-excess overland flow pathway which has a residence time of only 5.50 ± 0.09 min. The overland flow pathway is also less non-linear in its response in comparison to the subsurface pathway and overall response. A new DBM model of transpiration was found, and was similarly shown to give a rapid dynamic response to the input variable, in this case air temperature. The DBM approach indicated that higher order models (e.g. multiple subsurface pathways) were not statistically identifiable within any of the high frequency, 12-month time-series modelled. The first application of DBM modelling to land use/change scenarios in the same equatorial rainforest catchment suggested that the majority of the stream behaviour, in a period 7-years after selective logging, is insensitive to the skid trail densities associated with reduced impact logging (RIL) or clearfell systems in Malaysia. This is largely because of the relative insignificance of the overland flow pathway and the fact that changes in this pathway are predicted to occur on the rising stage of stream hydrographs, rather than at the more critical peak. While controversial, this result is consistent with our previous findings which show that some forestry impacts on hydrology are exaggerated in the popular perception." @default.
- W2017444807 created "2016-06-24" @default.
- W2017444807 creator A5002752085 @default.
- W2017444807 creator A5006707161 @default.
- W2017444807 creator A5022118369 @default.
- W2017444807 creator A5027111911 @default.
- W2017444807 creator A5040411598 @default.
- W2017444807 creator A5063940823 @default.
- W2017444807 date "2006-03-01" @default.
- W2017444807 modified "2023-09-27" @default.
- W2017444807 title "BARUMODEL: Combined Data Based Mechanistic models of runoff response in a managed rainforest catchment" @default.
- W2017444807 cites W1641523156 @default.
- W2017444807 cites W1971712837 @default.
- W2017444807 cites W1972793271 @default.
- W2017444807 cites W1975475100 @default.
- W2017444807 cites W1977081610 @default.
- W2017444807 cites W1979869494 @default.
- W2017444807 cites W1991921673 @default.
- W2017444807 cites W1996309381 @default.
- W2017444807 cites W1998407938 @default.
- W2017444807 cites W1998581361 @default.
- W2017444807 cites W1999520463 @default.
- W2017444807 cites W2002222318 @default.
- W2017444807 cites W2005523086 @default.
- W2017444807 cites W2008944573 @default.
- W2017444807 cites W2009426161 @default.
- W2017444807 cites W2011723691 @default.
- W2017444807 cites W2016952331 @default.
- W2017444807 cites W2017461955 @default.
- W2017444807 cites W2021767306 @default.
- W2017444807 cites W2025897514 @default.
- W2017444807 cites W2028504153 @default.
- W2017444807 cites W2030312177 @default.
- W2017444807 cites W2032311194 @default.
- W2017444807 cites W2033904036 @default.
- W2017444807 cites W2034782944 @default.
- W2017444807 cites W2034794474 @default.
- W2017444807 cites W2040360438 @default.
- W2017444807 cites W2044857905 @default.
- W2017444807 cites W2060873852 @default.
- W2017444807 cites W2062503509 @default.
- W2017444807 cites W2064763222 @default.
- W2017444807 cites W2067073069 @default.
- W2017444807 cites W2072436062 @default.
- W2017444807 cites W2073223140 @default.
- W2017444807 cites W2077038928 @default.
- W2017444807 cites W2080030486 @default.
- W2017444807 cites W2081817324 @default.
- W2017444807 cites W2086420480 @default.
- W2017444807 cites W2091591394 @default.
- W2017444807 cites W2100134794 @default.
- W2017444807 cites W2102293625 @default.
- W2017444807 cites W2112636346 @default.
- W2017444807 cites W2149004093 @default.
- W2017444807 cites W2149071528 @default.
- W2017444807 cites W2162257833 @default.
- W2017444807 cites W2164183927 @default.
- W2017444807 cites W2168137328 @default.
- W2017444807 cites W4232799253 @default.
- W2017444807 cites W4300614845 @default.
- W2017444807 doi "https://doi.org/10.1016/j.foreco.2005.12.008" @default.
- W2017444807 hasPublicationYear "2006" @default.
- W2017444807 type Work @default.
- W2017444807 sameAs 2017444807 @default.
- W2017444807 citedByCount "42" @default.
- W2017444807 countsByYear W20174448072012 @default.
- W2017444807 countsByYear W20174448072013 @default.
- W2017444807 countsByYear W20174448072014 @default.
- W2017444807 countsByYear W20174448072015 @default.
- W2017444807 countsByYear W20174448072016 @default.
- W2017444807 countsByYear W20174448072017 @default.
- W2017444807 countsByYear W20174448072018 @default.
- W2017444807 countsByYear W20174448072019 @default.
- W2017444807 countsByYear W20174448072020 @default.
- W2017444807 countsByYear W20174448072021 @default.
- W2017444807 countsByYear W20174448072022 @default.
- W2017444807 countsByYear W20174448072023 @default.
- W2017444807 crossrefType "journal-article" @default.
- W2017444807 hasAuthorship W2017444807A5002752085 @default.
- W2017444807 hasAuthorship W2017444807A5006707161 @default.
- W2017444807 hasAuthorship W2017444807A5022118369 @default.
- W2017444807 hasAuthorship W2017444807A5027111911 @default.
- W2017444807 hasAuthorship W2017444807A5040411598 @default.
- W2017444807 hasAuthorship W2017444807A5063940823 @default.
- W2017444807 hasConcept C126645576 @default.
- W2017444807 hasConcept C127313418 @default.
- W2017444807 hasConcept C187320778 @default.
- W2017444807 hasConcept C18903297 @default.
- W2017444807 hasConcept C205649164 @default.
- W2017444807 hasConcept C2619416 @default.
- W2017444807 hasConcept C39432304 @default.
- W2017444807 hasConcept C50477045 @default.
- W2017444807 hasConcept C53739315 @default.
- W2017444807 hasConcept C555313981 @default.
- W2017444807 hasConcept C58640448 @default.
- W2017444807 hasConcept C76886044 @default.
- W2017444807 hasConcept C86803240 @default.
- W2017444807 hasConceptScore W2017444807C126645576 @default.