Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017447380> ?p ?o ?g. }
- W2017447380 endingPage "132" @default.
- W2017447380 startingPage "126" @default.
- W2017447380 abstract "A predictive quantitative structure–property relationships (QSPR) is developed for modeling the retention index measured on the OV-101 glass capillary gas chromatography column, in a set of 1208 flavor and fragrance compounds. The 4885 molecular descriptors are calculated using the Dragon software and then are simultaneously analyzed through multivariable linear regression analysis using the replacement method (RM) variable subset selection technique. We proceed in three steps, the first one by considering all descriptor blocks, the second one by excluding conformational descriptors blocks, and the last one by analyzing only 3D-descriptors families. The models are properly validated through an external test set of compounds. Cross-validation methods such as leave-one-out and leave-more-out are applied, together with Y-randomization and applicability domain analysis. The results clearly suggest that 3D-descriptors do not offer relevant information for modeling the retention index, while a topological index such as the solvation connectivity index of first order has a high relevance for this purpose." @default.
- W2017447380 created "2016-06-24" @default.
- W2017447380 creator A5002112458 @default.
- W2017447380 creator A5025566723 @default.
- W2017447380 creator A5078876312 @default.
- W2017447380 creator A5083410661 @default.
- W2017447380 date "2015-01-01" @default.
- W2017447380 modified "2023-10-13" @default.
- W2017447380 title "QSPR analysis for the retention index of flavors and fragrances on a OV-101 column" @default.
- W2017447380 cites W1964918989 @default.
- W2017447380 cites W1965584372 @default.
- W2017447380 cites W1970232895 @default.
- W2017447380 cites W1980651926 @default.
- W2017447380 cites W1981176425 @default.
- W2017447380 cites W1985966715 @default.
- W2017447380 cites W1987838875 @default.
- W2017447380 cites W1989846067 @default.
- W2017447380 cites W1996851544 @default.
- W2017447380 cites W1998376605 @default.
- W2017447380 cites W2003123731 @default.
- W2017447380 cites W2006137358 @default.
- W2017447380 cites W2009392146 @default.
- W2017447380 cites W2011474706 @default.
- W2017447380 cites W2019447412 @default.
- W2017447380 cites W2020602991 @default.
- W2017447380 cites W2020629787 @default.
- W2017447380 cites W2021376064 @default.
- W2017447380 cites W2027368670 @default.
- W2017447380 cites W2032790127 @default.
- W2017447380 cites W2032916484 @default.
- W2017447380 cites W2041121108 @default.
- W2017447380 cites W2045556632 @default.
- W2017447380 cites W2053307421 @default.
- W2017447380 cites W2053491838 @default.
- W2017447380 cites W2054716083 @default.
- W2017447380 cites W2054769252 @default.
- W2017447380 cites W2057183252 @default.
- W2017447380 cites W2062950522 @default.
- W2017447380 cites W2069584764 @default.
- W2017447380 cites W2074629429 @default.
- W2017447380 cites W2078237097 @default.
- W2017447380 cites W2081704998 @default.
- W2017447380 cites W2082346386 @default.
- W2017447380 cites W2084692557 @default.
- W2017447380 cites W2086190989 @default.
- W2017447380 cites W2087466582 @default.
- W2017447380 cites W2087661061 @default.
- W2017447380 cites W2103366712 @default.
- W2017447380 cites W2332570042 @default.
- W2017447380 cites W4211110396 @default.
- W2017447380 cites W4247462785 @default.
- W2017447380 doi "https://doi.org/10.1016/j.chemolab.2014.09.020" @default.
- W2017447380 hasPublicationYear "2015" @default.
- W2017447380 type Work @default.
- W2017447380 sameAs 2017447380 @default.
- W2017447380 citedByCount "29" @default.
- W2017447380 countsByYear W20174473802015 @default.
- W2017447380 countsByYear W20174473802016 @default.
- W2017447380 countsByYear W20174473802017 @default.
- W2017447380 countsByYear W20174473802018 @default.
- W2017447380 countsByYear W20174473802019 @default.
- W2017447380 countsByYear W20174473802020 @default.
- W2017447380 countsByYear W20174473802021 @default.
- W2017447380 countsByYear W20174473802022 @default.
- W2017447380 countsByYear W20174473802023 @default.
- W2017447380 crossrefType "journal-article" @default.
- W2017447380 hasAuthorship W2017447380A5002112458 @default.
- W2017447380 hasAuthorship W2017447380A5025566723 @default.
- W2017447380 hasAuthorship W2017447380A5078876312 @default.
- W2017447380 hasAuthorship W2017447380A5083410661 @default.
- W2017447380 hasConcept C107908354 @default.
- W2017447380 hasConcept C119857082 @default.
- W2017447380 hasConcept C123460561 @default.
- W2017447380 hasConcept C124101348 @default.
- W2017447380 hasConcept C13355873 @default.
- W2017447380 hasConcept C136764020 @default.
- W2017447380 hasConcept C148093993 @default.
- W2017447380 hasConcept C148483581 @default.
- W2017447380 hasConcept C154945302 @default.
- W2017447380 hasConcept C164126121 @default.
- W2017447380 hasConcept C164923092 @default.
- W2017447380 hasConcept C177264268 @default.
- W2017447380 hasConcept C178790620 @default.
- W2017447380 hasConcept C185592680 @default.
- W2017447380 hasConcept C199360897 @default.
- W2017447380 hasConcept C2524010 @default.
- W2017447380 hasConcept C2777382242 @default.
- W2017447380 hasConcept C2780551164 @default.
- W2017447380 hasConcept C32909587 @default.
- W2017447380 hasConcept C33923547 @default.
- W2017447380 hasConcept C41008148 @default.
- W2017447380 hasConcept C43617362 @default.
- W2017447380 hasConcept C48921125 @default.
- W2017447380 hasConcept C71240020 @default.
- W2017447380 hasConcept C85666147 @default.
- W2017447380 hasConceptScore W2017447380C107908354 @default.
- W2017447380 hasConceptScore W2017447380C119857082 @default.
- W2017447380 hasConceptScore W2017447380C123460561 @default.