Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017461916> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2017461916 abstract "In this paper we present a general procedure to use Bagging techniques for time series processing and forecasting problems Bagging is one of the most used techniques for combining several predictors in order to produce a highly accurate method. The method uses bootstrap replications of the original training set and for each replicate sample one predictor is generated. After that the method combines the predictors using the majority vote for classification problems and the average function for regression problems In temporal learning tasks, the order serial of the data precludes to realize bootstrap samples Here, we present an approach which uses a recurrent neural network to transform the spatio-temporal information of the input data in a new larger space In this new space is possible to apply bootstrap techniques. In this initial paper, we evaluate our approach on 4 time series benchmarks using linear regressions Although, the idea presented here is more general and can be used with other kind of statistical methods such that CART, SVM, and so on. The empirical results show the power of this new approach to achieve good performances in temporal learning tasks" @default.
- W2017461916 created "2016-06-24" @default.
- W2017461916 creator A5007480371 @default.
- W2017461916 creator A5087133558 @default.
- W2017461916 date "2013-12-01" @default.
- W2017461916 modified "2023-10-14" @default.
- W2017461916 title "Time-series forecasting using Bagging techniques and reservoir computing" @default.
- W2017461916 cites W1987299193 @default.
- W2017461916 cites W2001263627 @default.
- W2017461916 cites W2020362675 @default.
- W2017461916 cites W2036451492 @default.
- W2017461916 cites W2070534370 @default.
- W2017461916 cites W2084610394 @default.
- W2017461916 cites W2103179919 @default.
- W2017461916 cites W2107878631 @default.
- W2017461916 cites W2125566231 @default.
- W2017461916 cites W2134342468 @default.
- W2017461916 cites W2147107577 @default.
- W2017461916 cites W2159682675 @default.
- W2017461916 cites W2164921999 @default.
- W2017461916 cites W2171865010 @default.
- W2017461916 cites W3004732066 @default.
- W2017461916 doi "https://doi.org/10.1109/socpar.2013.7054117" @default.
- W2017461916 hasPublicationYear "2013" @default.
- W2017461916 type Work @default.
- W2017461916 sameAs 2017461916 @default.
- W2017461916 citedByCount "3" @default.
- W2017461916 countsByYear W20174619162014 @default.
- W2017461916 countsByYear W20174619162021 @default.
- W2017461916 crossrefType "proceedings-article" @default.
- W2017461916 hasAuthorship W2017461916A5007480371 @default.
- W2017461916 hasAuthorship W2017461916A5087133558 @default.
- W2017461916 hasConcept C119857082 @default.
- W2017461916 hasConcept C124101348 @default.
- W2017461916 hasConcept C127313418 @default.
- W2017461916 hasConcept C135796866 @default.
- W2017461916 hasConcept C143724316 @default.
- W2017461916 hasConcept C147168706 @default.
- W2017461916 hasConcept C151406439 @default.
- W2017461916 hasConcept C151730666 @default.
- W2017461916 hasConcept C154945302 @default.
- W2017461916 hasConcept C161657586 @default.
- W2017461916 hasConcept C41008148 @default.
- W2017461916 hasConcept C50644808 @default.
- W2017461916 hasConceptScore W2017461916C119857082 @default.
- W2017461916 hasConceptScore W2017461916C124101348 @default.
- W2017461916 hasConceptScore W2017461916C127313418 @default.
- W2017461916 hasConceptScore W2017461916C135796866 @default.
- W2017461916 hasConceptScore W2017461916C143724316 @default.
- W2017461916 hasConceptScore W2017461916C147168706 @default.
- W2017461916 hasConceptScore W2017461916C151406439 @default.
- W2017461916 hasConceptScore W2017461916C151730666 @default.
- W2017461916 hasConceptScore W2017461916C154945302 @default.
- W2017461916 hasConceptScore W2017461916C161657586 @default.
- W2017461916 hasConceptScore W2017461916C41008148 @default.
- W2017461916 hasConceptScore W2017461916C50644808 @default.
- W2017461916 hasLocation W20174619161 @default.
- W2017461916 hasOpenAccess W2017461916 @default.
- W2017461916 hasPrimaryLocation W20174619161 @default.
- W2017461916 hasRelatedWork W126601891 @default.
- W2017461916 hasRelatedWork W1964982224 @default.
- W2017461916 hasRelatedWork W2080650820 @default.
- W2017461916 hasRelatedWork W2150451301 @default.
- W2017461916 hasRelatedWork W2150798635 @default.
- W2017461916 hasRelatedWork W2354329565 @default.
- W2017461916 hasRelatedWork W2357235357 @default.
- W2017461916 hasRelatedWork W2588204858 @default.
- W2017461916 hasRelatedWork W4213225422 @default.
- W2017461916 hasRelatedWork W4309045103 @default.
- W2017461916 isParatext "false" @default.
- W2017461916 isRetracted "false" @default.
- W2017461916 magId "2017461916" @default.
- W2017461916 workType "article" @default.