Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017468850> ?p ?o ?g. }
- W2017468850 endingPage "79" @default.
- W2017468850 startingPage "66" @default.
- W2017468850 abstract "Of the various renewable energy resources, wind power is widely recognized as one of the most promising. The management of wind farms and electricity systems can benefit greatly from the availability of estimates of the probability distribution of wind power generation. However, most research has focused on point forecasting of wind power. In this article, we develop an approach to producing density forecasts for the wind power generated at individual wind farms. Our interest is in intraday data and prediction from 1 to 72 hours ahead. We model wind power in terms of wind speed and wind direction. In this framework, there are two key uncertainties. First, there is the inherent uncertainty in wind speed and direction, and we model this using a bivariate vector autoregressive moving average-generalized autoregressive conditional heteroscedastic (VARMA-GARCH) model, with a Student t error distribution, in the Cartesian space of wind speed and direction. Second, there is the stochastic nature of the relationship of wind power to wind speed (described by the power curve), and to wind direction. We model this using conditional kernel density (CKD) estimation, which enables a nonparametric modeling of the conditional density of wind power. Using Monte Carlo simulation of the VARMA-GARCH model and CKD estimation, density forecasts of wind speed and direction are converted to wind power density forecasts. Our work is novel in several respects: previous wind power studies have not modeled a stochastic power curve; to accommodate time evolution in the power curve, we incorporate a time decay factor within the CKD method; and the CKD method is conditional on a density, rather than a single value. The new approach is evaluated using datasets from four Greek wind farms." @default.
- W2017468850 created "2016-06-24" @default.
- W2017468850 creator A5050756677 @default.
- W2017468850 creator A5078168355 @default.
- W2017468850 date "2012-03-01" @default.
- W2017468850 modified "2023-10-11" @default.
- W2017468850 title "Using Conditional Kernel Density Estimation for Wind Power Density Forecasting" @default.
- W2017468850 cites W1972556330 @default.
- W2017468850 cites W1979793013 @default.
- W2017468850 cites W1985643209 @default.
- W2017468850 cites W1985877738 @default.
- W2017468850 cites W1987315804 @default.
- W2017468850 cites W1991857164 @default.
- W2017468850 cites W1996786220 @default.
- W2017468850 cites W1998968611 @default.
- W2017468850 cites W2005453967 @default.
- W2017468850 cites W2024081693 @default.
- W2017468850 cites W2028119903 @default.
- W2017468850 cites W2038389749 @default.
- W2017468850 cites W2038469037 @default.
- W2017468850 cites W2040298412 @default.
- W2017468850 cites W2044739400 @default.
- W2017468850 cites W2052025260 @default.
- W2017468850 cites W2059413288 @default.
- W2017468850 cites W2068799179 @default.
- W2017468850 cites W2075965721 @default.
- W2017468850 cites W2086284119 @default.
- W2017468850 cites W2118788550 @default.
- W2017468850 cites W2130715829 @default.
- W2017468850 cites W2153193653 @default.
- W2017468850 cites W2156604062 @default.
- W2017468850 cites W2165799067 @default.
- W2017468850 cites W2172506050 @default.
- W2017468850 cites W2258149283 @default.
- W2017468850 cites W3124216392 @default.
- W2017468850 cites W3125564657 @default.
- W2017468850 cites W4249395738 @default.
- W2017468850 doi "https://doi.org/10.1080/01621459.2011.643745" @default.
- W2017468850 hasPublicationYear "2012" @default.
- W2017468850 type Work @default.
- W2017468850 sameAs 2017468850 @default.
- W2017468850 citedByCount "164" @default.
- W2017468850 countsByYear W20174688502012 @default.
- W2017468850 countsByYear W20174688502013 @default.
- W2017468850 countsByYear W20174688502014 @default.
- W2017468850 countsByYear W20174688502015 @default.
- W2017468850 countsByYear W20174688502016 @default.
- W2017468850 countsByYear W20174688502017 @default.
- W2017468850 countsByYear W20174688502018 @default.
- W2017468850 countsByYear W20174688502019 @default.
- W2017468850 countsByYear W20174688502020 @default.
- W2017468850 countsByYear W20174688502021 @default.
- W2017468850 countsByYear W20174688502022 @default.
- W2017468850 countsByYear W20174688502023 @default.
- W2017468850 crossrefType "journal-article" @default.
- W2017468850 hasAuthorship W2017468850A5050756677 @default.
- W2017468850 hasAuthorship W2017468850A5078168355 @default.
- W2017468850 hasBestOaLocation W20174688502 @default.
- W2017468850 hasConcept C105795698 @default.
- W2017468850 hasConcept C119599485 @default.
- W2017468850 hasConcept C127413603 @default.
- W2017468850 hasConcept C149782125 @default.
- W2017468850 hasConcept C153294291 @default.
- W2017468850 hasConcept C159877910 @default.
- W2017468850 hasConcept C161067210 @default.
- W2017468850 hasConcept C185429906 @default.
- W2017468850 hasConcept C205649164 @default.
- W2017468850 hasConcept C23922673 @default.
- W2017468850 hasConcept C33923547 @default.
- W2017468850 hasConcept C71134354 @default.
- W2017468850 hasConcept C78600449 @default.
- W2017468850 hasConcept C91602232 @default.
- W2017468850 hasConceptScore W2017468850C105795698 @default.
- W2017468850 hasConceptScore W2017468850C119599485 @default.
- W2017468850 hasConceptScore W2017468850C127413603 @default.
- W2017468850 hasConceptScore W2017468850C149782125 @default.
- W2017468850 hasConceptScore W2017468850C153294291 @default.
- W2017468850 hasConceptScore W2017468850C159877910 @default.
- W2017468850 hasConceptScore W2017468850C161067210 @default.
- W2017468850 hasConceptScore W2017468850C185429906 @default.
- W2017468850 hasConceptScore W2017468850C205649164 @default.
- W2017468850 hasConceptScore W2017468850C23922673 @default.
- W2017468850 hasConceptScore W2017468850C33923547 @default.
- W2017468850 hasConceptScore W2017468850C71134354 @default.
- W2017468850 hasConceptScore W2017468850C78600449 @default.
- W2017468850 hasConceptScore W2017468850C91602232 @default.
- W2017468850 hasIssue "497" @default.
- W2017468850 hasLocation W20174688501 @default.
- W2017468850 hasLocation W20174688502 @default.
- W2017468850 hasLocation W20174688503 @default.
- W2017468850 hasLocation W20174688504 @default.
- W2017468850 hasLocation W20174688505 @default.
- W2017468850 hasOpenAccess W2017468850 @default.
- W2017468850 hasPrimaryLocation W20174688501 @default.
- W2017468850 hasRelatedWork W2093739529 @default.
- W2017468850 hasRelatedWork W2130522552 @default.
- W2017468850 hasRelatedWork W2136228279 @default.
- W2017468850 hasRelatedWork W2378867766 @default.