Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017474477> ?p ?o ?g. }
- W2017474477 endingPage "472" @default.
- W2017474477 startingPage "461" @default.
- W2017474477 abstract "Biomarkers are the only feasible way to detect and monitor presymptomatic Alzheimer's disease (AD). No single biomarker can predict future cognitive decline with an acceptable level of accuracy. In addition to designing powerful multimodal diagnostic platforms, a careful investigation of the major sources of disease heterogeneity and their influence on biomarker changes is needed. Here we investigated the accuracy of a novel multimodal biomarker classifier for differentiating cognitively normal (NC), mild cognitive impairment (MCI) and AD subjects with and without stratification by ApoE4 genotype. 111 NC, 182 MCI and 95 AD ADNI participants provided both structural MRI and CSF data at baseline. We used an automated machine-learning classifier to test the ability of hippocampal volume and CSF Aβ, t-tau and p-tau levels, both separately and in combination, to differentiate NC, MCI and AD subjects, and predict conversion. We hypothesized that the combined hippocampal/CSF biomarker classifier model would achieve the highest accuracy in differentiating between the three diagnostic groups and that ApoE4 genotype will affect both diagnostic accuracy and biomarker selection. The combined hippocampal/CSF classifier performed better than hippocampus-only classifier in differentiating NC from MCI and NC from AD. It also outperformed the CSF-only classifier in differentiating NC vs. AD. Our amyloid marker played a role in discriminating NC from MCI or AD but not for MCI vs. AD. Neurodegenerative markers contributed to accurate discrimination of AD from NC and MCI but not NC from MCI. Classifiers predicting MCI conversion performed well only after ApoE4 stratification. Hippocampal volume and sex achieved AUC = 0.68 for predicting conversion in the ApoE4-positive MCI, while CSF p-tau, education and sex achieved AUC = 0.89 for predicting conversion in ApoE4-negative MCI. These observations support the proposed biomarker trajectory in AD, which postulates that amyloid markers become abnormal early in the disease course while markers of neurodegeneration become abnormal later in the disease course and suggests that ApoE4 could be at least partially responsible for some of the observed disease heterogeneity." @default.
- W2017474477 created "2016-06-24" @default.
- W2017474477 creator A5005099850 @default.
- W2017474477 creator A5021394368 @default.
- W2017474477 creator A5023136222 @default.
- W2017474477 creator A5029221869 @default.
- W2017474477 creator A5033942521 @default.
- W2017474477 creator A5043086041 @default.
- W2017474477 creator A5044611916 @default.
- W2017474477 creator A5057404133 @default.
- W2017474477 creator A5070990818 @default.
- W2017474477 creator A5079102104 @default.
- W2017474477 date "2014-01-01" @default.
- W2017474477 modified "2023-10-18" @default.
- W2017474477 title "ApoE4 effects on automated diagnostic classifiers for mild cognitive impairment and Alzheimer's disease" @default.
- W2017474477 cites W1970684162 @default.
- W2017474477 cites W1970749899 @default.
- W2017474477 cites W1977498848 @default.
- W2017474477 cites W1978482448 @default.
- W2017474477 cites W1979121852 @default.
- W2017474477 cites W1984748043 @default.
- W2017474477 cites W1986423432 @default.
- W2017474477 cites W1988790447 @default.
- W2017474477 cites W1988963873 @default.
- W2017474477 cites W2000739322 @default.
- W2017474477 cites W2000816306 @default.
- W2017474477 cites W2004027050 @default.
- W2017474477 cites W2004079003 @default.
- W2017474477 cites W2006247983 @default.
- W2017474477 cites W2008152557 @default.
- W2017474477 cites W2008301592 @default.
- W2017474477 cites W2012133068 @default.
- W2017474477 cites W2028590992 @default.
- W2017474477 cites W2032977736 @default.
- W2017474477 cites W2042070546 @default.
- W2017474477 cites W2044367669 @default.
- W2017474477 cites W2053862380 @default.
- W2017474477 cites W2053935454 @default.
- W2017474477 cites W2060212076 @default.
- W2017474477 cites W2061699647 @default.
- W2017474477 cites W2063136428 @default.
- W2017474477 cites W2064145055 @default.
- W2017474477 cites W2066462635 @default.
- W2017474477 cites W2069340920 @default.
- W2017474477 cites W2076680453 @default.
- W2017474477 cites W2078524519 @default.
- W2017474477 cites W2078551663 @default.
- W2017474477 cites W2078563723 @default.
- W2017474477 cites W2085851888 @default.
- W2017474477 cites W2087172160 @default.
- W2017474477 cites W2088269376 @default.
- W2017474477 cites W2097775060 @default.
- W2017474477 cites W2100377941 @default.
- W2017474477 cites W2102508963 @default.
- W2017474477 cites W2106775021 @default.
- W2017474477 cites W2108475007 @default.
- W2017474477 cites W2122328291 @default.
- W2017474477 cites W2129030910 @default.
- W2017474477 cites W2134379460 @default.
- W2017474477 cites W2141796362 @default.
- W2017474477 cites W2143426320 @default.
- W2017474477 cites W2143895814 @default.
- W2017474477 cites W2144376472 @default.
- W2017474477 cites W2145721257 @default.
- W2017474477 cites W2146788881 @default.
- W2017474477 cites W2149274656 @default.
- W2017474477 cites W2150481150 @default.
- W2017474477 cites W2156024136 @default.
- W2017474477 cites W2157848968 @default.
- W2017474477 cites W2167638846 @default.
- W2017474477 cites W2168283959 @default.
- W2017474477 cites W2169212716 @default.
- W2017474477 doi "https://doi.org/10.1016/j.nicl.2013.12.012" @default.
- W2017474477 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3952354" @default.
- W2017474477 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24634832" @default.
- W2017474477 hasPublicationYear "2014" @default.
- W2017474477 type Work @default.
- W2017474477 sameAs 2017474477 @default.
- W2017474477 citedByCount "42" @default.
- W2017474477 countsByYear W20174744772014 @default.
- W2017474477 countsByYear W20174744772015 @default.
- W2017474477 countsByYear W20174744772016 @default.
- W2017474477 countsByYear W20174744772017 @default.
- W2017474477 countsByYear W20174744772018 @default.
- W2017474477 countsByYear W20174744772019 @default.
- W2017474477 countsByYear W20174744772020 @default.
- W2017474477 countsByYear W20174744772021 @default.
- W2017474477 countsByYear W20174744772022 @default.
- W2017474477 countsByYear W20174744772023 @default.
- W2017474477 crossrefType "journal-article" @default.
- W2017474477 hasAuthorship W2017474477A5005099850 @default.
- W2017474477 hasAuthorship W2017474477A5021394368 @default.
- W2017474477 hasAuthorship W2017474477A5023136222 @default.
- W2017474477 hasAuthorship W2017474477A5029221869 @default.
- W2017474477 hasAuthorship W2017474477A5033942521 @default.
- W2017474477 hasAuthorship W2017474477A5043086041 @default.
- W2017474477 hasAuthorship W2017474477A5044611916 @default.
- W2017474477 hasAuthorship W2017474477A5057404133 @default.