Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017488093> ?p ?o ?g. }
- W2017488093 endingPage "241" @default.
- W2017488093 startingPage "233" @default.
- W2017488093 abstract "Abstract Markov chain sampling has recently received considerable attention, in particular in the context of Bayesian computation and maximum likelihood estimation. This article discusses the use of Markov chain splitting, originally developed for the theoretical analysis of general state-space Markov chains, to introduce regeneration into Markov chain samplers. This allows the use of regenerative methods for analyzing the output of these samplers and can provide a useful diagnostic of sampler performance. The approach is applied to several samplers, including certain Metropolis samplers that can be used on their own or in hybrid samplers, and is illustrated in several examples." @default.
- W2017488093 created "2016-06-24" @default.
- W2017488093 creator A5023047996 @default.
- W2017488093 creator A5026930195 @default.
- W2017488093 creator A5039734355 @default.
- W2017488093 date "1995-03-01" @default.
- W2017488093 modified "2023-10-03" @default.
- W2017488093 title "Regeneration in Markov Chain Samplers" @default.
- W2017488093 cites W1990496309 @default.
- W2017488093 cites W2037139490 @default.
- W2017488093 cites W2042461760 @default.
- W2017488093 cites W2056452850 @default.
- W2017488093 cites W2056760934 @default.
- W2017488093 cites W2057565703 @default.
- W2017488093 cites W2076430891 @default.
- W2017488093 cites W2089897750 @default.
- W2017488093 cites W2138309709 @default.
- W2017488093 cites W2148534890 @default.
- W2017488093 cites W2152977846 @default.
- W2017488093 cites W2159793005 @default.
- W2017488093 cites W4245800583 @default.
- W2017488093 cites W4251263574 @default.
- W2017488093 cites W4302097244 @default.
- W2017488093 cites W4302434451 @default.
- W2017488093 doi "https://doi.org/10.1080/01621459.1995.10476507" @default.
- W2017488093 hasPublicationYear "1995" @default.
- W2017488093 type Work @default.
- W2017488093 sameAs 2017488093 @default.
- W2017488093 citedByCount "177" @default.
- W2017488093 countsByYear W20174880932012 @default.
- W2017488093 countsByYear W20174880932013 @default.
- W2017488093 countsByYear W20174880932014 @default.
- W2017488093 countsByYear W20174880932015 @default.
- W2017488093 countsByYear W20174880932016 @default.
- W2017488093 countsByYear W20174880932017 @default.
- W2017488093 countsByYear W20174880932018 @default.
- W2017488093 countsByYear W20174880932019 @default.
- W2017488093 countsByYear W20174880932020 @default.
- W2017488093 countsByYear W20174880932021 @default.
- W2017488093 countsByYear W20174880932022 @default.
- W2017488093 crossrefType "journal-article" @default.
- W2017488093 hasAuthorship W2017488093A5023047996 @default.
- W2017488093 hasAuthorship W2017488093A5026930195 @default.
- W2017488093 hasAuthorship W2017488093A5039734355 @default.
- W2017488093 hasBestOaLocation W20174880932 @default.
- W2017488093 hasConcept C106131492 @default.
- W2017488093 hasConcept C107673813 @default.
- W2017488093 hasConcept C111350023 @default.
- W2017488093 hasConcept C119857082 @default.
- W2017488093 hasConcept C140779682 @default.
- W2017488093 hasConcept C154945302 @default.
- W2017488093 hasConcept C163836022 @default.
- W2017488093 hasConcept C166957645 @default.
- W2017488093 hasConcept C205649164 @default.
- W2017488093 hasConcept C2779343474 @default.
- W2017488093 hasConcept C31972630 @default.
- W2017488093 hasConcept C33923547 @default.
- W2017488093 hasConcept C41008148 @default.
- W2017488093 hasConcept C54907487 @default.
- W2017488093 hasConcept C96810086 @default.
- W2017488093 hasConcept C97074811 @default.
- W2017488093 hasConcept C98763669 @default.
- W2017488093 hasConceptScore W2017488093C106131492 @default.
- W2017488093 hasConceptScore W2017488093C107673813 @default.
- W2017488093 hasConceptScore W2017488093C111350023 @default.
- W2017488093 hasConceptScore W2017488093C119857082 @default.
- W2017488093 hasConceptScore W2017488093C140779682 @default.
- W2017488093 hasConceptScore W2017488093C154945302 @default.
- W2017488093 hasConceptScore W2017488093C163836022 @default.
- W2017488093 hasConceptScore W2017488093C166957645 @default.
- W2017488093 hasConceptScore W2017488093C205649164 @default.
- W2017488093 hasConceptScore W2017488093C2779343474 @default.
- W2017488093 hasConceptScore W2017488093C31972630 @default.
- W2017488093 hasConceptScore W2017488093C33923547 @default.
- W2017488093 hasConceptScore W2017488093C41008148 @default.
- W2017488093 hasConceptScore W2017488093C54907487 @default.
- W2017488093 hasConceptScore W2017488093C96810086 @default.
- W2017488093 hasConceptScore W2017488093C97074811 @default.
- W2017488093 hasConceptScore W2017488093C98763669 @default.
- W2017488093 hasIssue "429" @default.
- W2017488093 hasLocation W20174880931 @default.
- W2017488093 hasLocation W20174880932 @default.
- W2017488093 hasOpenAccess W2017488093 @default.
- W2017488093 hasPrimaryLocation W20174880931 @default.
- W2017488093 hasRelatedWork W1989328058 @default.
- W2017488093 hasRelatedWork W2036451598 @default.
- W2017488093 hasRelatedWork W2100578510 @default.
- W2017488093 hasRelatedWork W2375491161 @default.
- W2017488093 hasRelatedWork W2735859191 @default.
- W2017488093 hasRelatedWork W2895635743 @default.
- W2017488093 hasRelatedWork W2950513174 @default.
- W2017488093 hasRelatedWork W2965457720 @default.
- W2017488093 hasRelatedWork W2999473839 @default.
- W2017488093 hasRelatedWork W3022658609 @default.
- W2017488093 hasVolume "90" @default.
- W2017488093 isParatext "false" @default.
- W2017488093 isRetracted "false" @default.
- W2017488093 magId "2017488093" @default.