Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017489710> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2017489710 endingPage "258" @default.
- W2017489710 startingPage "253" @default.
- W2017489710 abstract "In this study, we introduce a new category of fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Informal speaking, information granules are viewed as linked collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. To identify the structure of fuzzy rules we use genetic algorithms (GAs). Granulation of information with the aid of Hard C-Means (HCM) clustering algorithm help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is contrasted with the performance of the conventional fuzzy models in the literature." @default.
- W2017489710 created "2016-06-24" @default.
- W2017489710 creator A5016001508 @default.
- W2017489710 creator A5035932097 @default.
- W2017489710 creator A5073908233 @default.
- W2017489710 date "2005-09-01" @default.
- W2017489710 modified "2023-10-18" @default.
- W2017489710 title "Information Granulation-based Fuzzy Inference Systems by Means of Genetic Optimization and Polynomial Fuzzy Inference Method" @default.
- W2017489710 cites W1974419365 @default.
- W2017489710 cites W1983690525 @default.
- W2017489710 cites W1989130143 @default.
- W2017489710 cites W2016361660 @default.
- W2017489710 cites W2019207321 @default.
- W2017489710 cites W2031470529 @default.
- W2017489710 cites W2032084249 @default.
- W2017489710 cites W2045971722 @default.
- W2017489710 cites W2050288270 @default.
- W2017489710 cites W2064092773 @default.
- W2017489710 cites W2086393750 @default.
- W2017489710 cites W2094631910 @default.
- W2017489710 cites W2132638958 @default.
- W2017489710 doi "https://doi.org/10.5391/ijfis.2005.5.3.253" @default.
- W2017489710 hasPublicationYear "2005" @default.
- W2017489710 type Work @default.
- W2017489710 sameAs 2017489710 @default.
- W2017489710 citedByCount "0" @default.
- W2017489710 crossrefType "journal-article" @default.
- W2017489710 hasAuthorship W2017489710A5016001508 @default.
- W2017489710 hasAuthorship W2017489710A5035932097 @default.
- W2017489710 hasAuthorship W2017489710A5073908233 @default.
- W2017489710 hasBestOaLocation W20174897101 @default.
- W2017489710 hasConcept C119857082 @default.
- W2017489710 hasConcept C121332964 @default.
- W2017489710 hasConcept C124101348 @default.
- W2017489710 hasConcept C127385683 @default.
- W2017489710 hasConcept C134306372 @default.
- W2017489710 hasConcept C148671577 @default.
- W2017489710 hasConcept C154945302 @default.
- W2017489710 hasConcept C17212007 @default.
- W2017489710 hasConcept C186108316 @default.
- W2017489710 hasConcept C1883856 @default.
- W2017489710 hasConcept C195975749 @default.
- W2017489710 hasConcept C2776214188 @default.
- W2017489710 hasConcept C33923547 @default.
- W2017489710 hasConcept C41008148 @default.
- W2017489710 hasConcept C42011625 @default.
- W2017489710 hasConcept C58166 @default.
- W2017489710 hasConcept C73555534 @default.
- W2017489710 hasConcept C74650414 @default.
- W2017489710 hasConcept C88463166 @default.
- W2017489710 hasConcept C8880873 @default.
- W2017489710 hasConcept C90119067 @default.
- W2017489710 hasConceptScore W2017489710C119857082 @default.
- W2017489710 hasConceptScore W2017489710C121332964 @default.
- W2017489710 hasConceptScore W2017489710C124101348 @default.
- W2017489710 hasConceptScore W2017489710C127385683 @default.
- W2017489710 hasConceptScore W2017489710C134306372 @default.
- W2017489710 hasConceptScore W2017489710C148671577 @default.
- W2017489710 hasConceptScore W2017489710C154945302 @default.
- W2017489710 hasConceptScore W2017489710C17212007 @default.
- W2017489710 hasConceptScore W2017489710C186108316 @default.
- W2017489710 hasConceptScore W2017489710C1883856 @default.
- W2017489710 hasConceptScore W2017489710C195975749 @default.
- W2017489710 hasConceptScore W2017489710C2776214188 @default.
- W2017489710 hasConceptScore W2017489710C33923547 @default.
- W2017489710 hasConceptScore W2017489710C41008148 @default.
- W2017489710 hasConceptScore W2017489710C42011625 @default.
- W2017489710 hasConceptScore W2017489710C58166 @default.
- W2017489710 hasConceptScore W2017489710C73555534 @default.
- W2017489710 hasConceptScore W2017489710C74650414 @default.
- W2017489710 hasConceptScore W2017489710C88463166 @default.
- W2017489710 hasConceptScore W2017489710C8880873 @default.
- W2017489710 hasConceptScore W2017489710C90119067 @default.
- W2017489710 hasIssue "3" @default.
- W2017489710 hasLocation W20174897101 @default.
- W2017489710 hasOpenAccess W2017489710 @default.
- W2017489710 hasPrimaryLocation W20174897101 @default.
- W2017489710 hasRelatedWork W1493159477 @default.
- W2017489710 hasRelatedWork W1544938875 @default.
- W2017489710 hasRelatedWork W1605800850 @default.
- W2017489710 hasRelatedWork W2008615179 @default.
- W2017489710 hasRelatedWork W2154097169 @default.
- W2017489710 hasRelatedWork W2157228368 @default.
- W2017489710 hasRelatedWork W2164589519 @default.
- W2017489710 hasRelatedWork W2168917581 @default.
- W2017489710 hasRelatedWork W2380160423 @default.
- W2017489710 hasRelatedWork W416071199 @default.
- W2017489710 hasVolume "5" @default.
- W2017489710 isParatext "false" @default.
- W2017489710 isRetracted "false" @default.
- W2017489710 magId "2017489710" @default.
- W2017489710 workType "article" @default.