Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017492739> ?p ?o ?g. }
- W2017492739 endingPage "67" @default.
- W2017492739 startingPage "47" @default.
- W2017492739 abstract "As multi-dimensional complex data become more common, new regularization schemes tailored to those data are needed. In this paper we present a scheme for regularising diffusion tensor magnetic resonance (DT-MR) data, and more generally multi-dimensional data defined by a direction map and one or several magnitude maps. The scheme is divided in two steps. First, a variational method is proposed to restore direction fields with preservation of discontinuities. Its theoretical aspects are presented, as well as its application to the direction field that defines the main orientation of the diffusion tensors. The second step makes use of an anisotropic diffusion process to regularize the magnitude maps. The main idea is that for a range of data it is possible to use the restored direction as a prior to drive the regularization process in a way that preserves discontinuities and respects the local coherence of the magnitude map. We show that anisotropic diffusion is a convenient framework to implement that idea, and define a regularization process for the magnitude maps from our DT-MR data. Both steps are illustated on synthetic and real diffusion tensor magnetic resonance data." @default.
- W2017492739 created "2016-06-24" @default.
- W2017492739 creator A5033449704 @default.
- W2017492739 creator A5082445591 @default.
- W2017492739 creator A5085875530 @default.
- W2017492739 date "2004-03-01" @default.
- W2017492739 modified "2023-09-27" @default.
- W2017492739 title "Diffusion tensor magnetic resonance image regularization" @default.
- W2017492739 cites W12532419 @default.
- W2017492739 cites W127809959 @default.
- W2017492739 cites W1523201499 @default.
- W2017492739 cites W1553707579 @default.
- W2017492739 cites W1860502884 @default.
- W2017492739 cites W1964404147 @default.
- W2017492739 cites W1964802316 @default.
- W2017492739 cites W1965874085 @default.
- W2017492739 cites W1966786995 @default.
- W2017492739 cites W1983633249 @default.
- W2017492739 cites W1984216864 @default.
- W2017492739 cites W2015228618 @default.
- W2017492739 cites W2019151455 @default.
- W2017492739 cites W2020332292 @default.
- W2017492739 cites W2022735534 @default.
- W2017492739 cites W2027401313 @default.
- W2017492739 cites W2065164181 @default.
- W2017492739 cites W2103559027 @default.
- W2017492739 cites W2105087227 @default.
- W2017492739 cites W2110431535 @default.
- W2017492739 cites W2120259577 @default.
- W2017492739 cites W2120423892 @default.
- W2017492739 cites W2139158372 @default.
- W2017492739 cites W2146052399 @default.
- W2017492739 cites W2147133578 @default.
- W2017492739 cites W2150134853 @default.
- W2017492739 cites W2157035009 @default.
- W2017492739 cites W2161119653 @default.
- W2017492739 cites W2163111080 @default.
- W2017492739 cites W2170596158 @default.
- W2017492739 cites W2294491857 @default.
- W2017492739 cites W3011612142 @default.
- W2017492739 cites W81212968 @default.
- W2017492739 doi "https://doi.org/10.1016/j.media.2003.06.002" @default.
- W2017492739 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/14644146" @default.
- W2017492739 hasPublicationYear "2004" @default.
- W2017492739 type Work @default.
- W2017492739 sameAs 2017492739 @default.
- W2017492739 citedByCount "89" @default.
- W2017492739 countsByYear W20174927392012 @default.
- W2017492739 countsByYear W20174927392013 @default.
- W2017492739 countsByYear W20174927392014 @default.
- W2017492739 countsByYear W20174927392015 @default.
- W2017492739 countsByYear W20174927392016 @default.
- W2017492739 countsByYear W20174927392019 @default.
- W2017492739 countsByYear W20174927392020 @default.
- W2017492739 countsByYear W20174927392021 @default.
- W2017492739 countsByYear W20174927392022 @default.
- W2017492739 crossrefType "journal-article" @default.
- W2017492739 hasAuthorship W2017492739A5033449704 @default.
- W2017492739 hasAuthorship W2017492739A5082445591 @default.
- W2017492739 hasAuthorship W2017492739A5085875530 @default.
- W2017492739 hasConcept C105795698 @default.
- W2017492739 hasConcept C11413529 @default.
- W2017492739 hasConcept C115961682 @default.
- W2017492739 hasConcept C120665830 @default.
- W2017492739 hasConcept C121332964 @default.
- W2017492739 hasConcept C126838900 @default.
- W2017492739 hasConcept C134306372 @default.
- W2017492739 hasConcept C143409427 @default.
- W2017492739 hasConcept C149550507 @default.
- W2017492739 hasConcept C154945302 @default.
- W2017492739 hasConcept C155281189 @default.
- W2017492739 hasConcept C15627037 @default.
- W2017492739 hasConcept C203504353 @default.
- W2017492739 hasConcept C2524010 @default.
- W2017492739 hasConcept C2776135515 @default.
- W2017492739 hasConcept C2781181686 @default.
- W2017492739 hasConcept C3017618536 @default.
- W2017492739 hasConcept C33923547 @default.
- W2017492739 hasConcept C41008148 @default.
- W2017492739 hasConcept C56739046 @default.
- W2017492739 hasConcept C68710425 @default.
- W2017492739 hasConcept C71924100 @default.
- W2017492739 hasConcept C85725439 @default.
- W2017492739 hasConceptScore W2017492739C105795698 @default.
- W2017492739 hasConceptScore W2017492739C11413529 @default.
- W2017492739 hasConceptScore W2017492739C115961682 @default.
- W2017492739 hasConceptScore W2017492739C120665830 @default.
- W2017492739 hasConceptScore W2017492739C121332964 @default.
- W2017492739 hasConceptScore W2017492739C126838900 @default.
- W2017492739 hasConceptScore W2017492739C134306372 @default.
- W2017492739 hasConceptScore W2017492739C143409427 @default.
- W2017492739 hasConceptScore W2017492739C149550507 @default.
- W2017492739 hasConceptScore W2017492739C154945302 @default.
- W2017492739 hasConceptScore W2017492739C155281189 @default.
- W2017492739 hasConceptScore W2017492739C15627037 @default.
- W2017492739 hasConceptScore W2017492739C203504353 @default.
- W2017492739 hasConceptScore W2017492739C2524010 @default.
- W2017492739 hasConceptScore W2017492739C2776135515 @default.