Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017492833> ?p ?o ?g. }
- W2017492833 endingPage "1820" @default.
- W2017492833 startingPage "1808" @default.
- W2017492833 abstract "This paper presents a new approach based on artificial neural networks (ANNs) to determine the properties of liquid and two phase boiling and condensing of two alternative refrigerant/absorbent couples (methanol/LiBr and methanol/LiCl). These couples do not cause ozone depletion and use in the absorption thermal systems (ATSs). ANNs are able to learn the key information patterns within multidimensional information domain. ANNs operate such as a ‘black box’ model, requiring no detailed information about the system. On the other hand, they learn the relationship between the input and the output. In order to train the neural network, limited experimental measurements were used as training data and test data. In this study, in input layer, there are temperatures in the range of 298–498 K, pressures (0.1–40 MPa) and concentrations of 2%, 7%, 12% of the couples; specific volume is in output layer. The back-propagation learning algorithm with three different variants, namely scaled conjugate gradient (SCG), Pola–Ribiere conjugate gradient (CGP), and Levenberg–Marquardt (LM), and logistic sigmoid transfer function were used in the network so that the best approach can find. The most suitable algorithm and neuron number in the hidden layer are found as SCG with 8 neurons. For this number level, after the training, it is found that maximum error is less than 3%, average error is about 1% and R2 value are 99.999%. As seen from the results obtained the thermodynamic equations for each pair by using the weights of network have been obviously predicted within acceptable errors. This paper shows that values predicted with ANN can be used to define the thermodynamic properties instead of approximate and complex analytic equations." @default.
- W2017492833 created "2016-06-24" @default.
- W2017492833 creator A5030897392 @default.
- W2017492833 creator A5040145224 @default.
- W2017492833 creator A5053135641 @default.
- W2017492833 date "2005-08-01" @default.
- W2017492833 modified "2023-09-26" @default.
- W2017492833 title "Formulation based on artificial neural network of thermodynamic properties of ozone friendly refrigerant/absorbent couples" @default.
- W2017492833 cites W154822723 @default.
- W2017492833 cites W1582555728 @default.
- W2017492833 cites W1971889704 @default.
- W2017492833 cites W1978203689 @default.
- W2017492833 cites W1982380760 @default.
- W2017492833 cites W1985981105 @default.
- W2017492833 cites W1988071900 @default.
- W2017492833 cites W1989437959 @default.
- W2017492833 cites W1993761604 @default.
- W2017492833 cites W1996695506 @default.
- W2017492833 cites W2009773709 @default.
- W2017492833 cites W2010222480 @default.
- W2017492833 cites W2021640400 @default.
- W2017492833 cites W2035882531 @default.
- W2017492833 cites W2036928892 @default.
- W2017492833 cites W2047615886 @default.
- W2017492833 cites W2054198021 @default.
- W2017492833 cites W2057936307 @default.
- W2017492833 cites W2061501851 @default.
- W2017492833 cites W2073339645 @default.
- W2017492833 cites W2074244069 @default.
- W2017492833 cites W2086260890 @default.
- W2017492833 cites W2092025739 @default.
- W2017492833 cites W2093551083 @default.
- W2017492833 cites W2119701587 @default.
- W2017492833 cites W2163600703 @default.
- W2017492833 doi "https://doi.org/10.1016/j.applthermaleng.2004.11.003" @default.
- W2017492833 hasPublicationYear "2005" @default.
- W2017492833 type Work @default.
- W2017492833 sameAs 2017492833 @default.
- W2017492833 citedByCount "41" @default.
- W2017492833 countsByYear W20174928332012 @default.
- W2017492833 countsByYear W20174928332013 @default.
- W2017492833 countsByYear W20174928332014 @default.
- W2017492833 countsByYear W20174928332015 @default.
- W2017492833 countsByYear W20174928332016 @default.
- W2017492833 countsByYear W20174928332019 @default.
- W2017492833 countsByYear W20174928332022 @default.
- W2017492833 countsByYear W20174928332023 @default.
- W2017492833 crossrefType "journal-article" @default.
- W2017492833 hasAuthorship W2017492833A5030897392 @default.
- W2017492833 hasAuthorship W2017492833A5040145224 @default.
- W2017492833 hasAuthorship W2017492833A5053135641 @default.
- W2017492833 hasConcept C107706546 @default.
- W2017492833 hasConcept C11413529 @default.
- W2017492833 hasConcept C121332964 @default.
- W2017492833 hasConcept C153258448 @default.
- W2017492833 hasConcept C154945302 @default.
- W2017492833 hasConcept C155032097 @default.
- W2017492833 hasConcept C186060115 @default.
- W2017492833 hasConcept C199499590 @default.
- W2017492833 hasConcept C41008148 @default.
- W2017492833 hasConcept C50644808 @default.
- W2017492833 hasConcept C81184566 @default.
- W2017492833 hasConcept C81388566 @default.
- W2017492833 hasConcept C86803240 @default.
- W2017492833 hasConcept C87578567 @default.
- W2017492833 hasConcept C97355855 @default.
- W2017492833 hasConceptScore W2017492833C107706546 @default.
- W2017492833 hasConceptScore W2017492833C11413529 @default.
- W2017492833 hasConceptScore W2017492833C121332964 @default.
- W2017492833 hasConceptScore W2017492833C153258448 @default.
- W2017492833 hasConceptScore W2017492833C154945302 @default.
- W2017492833 hasConceptScore W2017492833C155032097 @default.
- W2017492833 hasConceptScore W2017492833C186060115 @default.
- W2017492833 hasConceptScore W2017492833C199499590 @default.
- W2017492833 hasConceptScore W2017492833C41008148 @default.
- W2017492833 hasConceptScore W2017492833C50644808 @default.
- W2017492833 hasConceptScore W2017492833C81184566 @default.
- W2017492833 hasConceptScore W2017492833C81388566 @default.
- W2017492833 hasConceptScore W2017492833C86803240 @default.
- W2017492833 hasConceptScore W2017492833C87578567 @default.
- W2017492833 hasConceptScore W2017492833C97355855 @default.
- W2017492833 hasIssue "11-12" @default.
- W2017492833 hasLocation W20174928331 @default.
- W2017492833 hasOpenAccess W2017492833 @default.
- W2017492833 hasPrimaryLocation W20174928331 @default.
- W2017492833 hasRelatedWork W2017492833 @default.
- W2017492833 hasRelatedWork W2018863220 @default.
- W2017492833 hasRelatedWork W2034060070 @default.
- W2017492833 hasRelatedWork W2071030544 @default.
- W2017492833 hasRelatedWork W2143043347 @default.
- W2017492833 hasRelatedWork W2345366016 @default.
- W2017492833 hasRelatedWork W2350850615 @default.
- W2017492833 hasRelatedWork W2570846706 @default.
- W2017492833 hasRelatedWork W2769968351 @default.
- W2017492833 hasRelatedWork W99970232 @default.
- W2017492833 hasVolume "25" @default.
- W2017492833 isParatext "false" @default.
- W2017492833 isRetracted "false" @default.