Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017508840> ?p ?o ?g. }
- W2017508840 abstract "The formalism of stochastic inflation is a powerful tool for analyzing the backreaction of cosmological perturbations, and making precise predictions for inflationary observables. We demonstrate this with the simple ${m}^{2}{ensuremath{phi}}^{2}$ model of inflation, wherein we obtain an effective field theory for IR modes of the inflaton, which remains coupled to UV modes through a classical noise. We compute slow-roll corrections to the evolution of UV modes (i.e. quantum fluctuations), and track this effect from the UV theory to the IR theory, where it manifests as a correction to the classical noise. We compute the stochastic correction to the spectral index of primordial perturbations, finding a small effect, and discuss models in which this effect can become large. We extend our analysis to tensor modes, and demonstrate that the stochastic approach allows us to recover the standard tensor tilt ${n}_{T}$, plus corrections." @default.
- W2017508840 created "2016-06-24" @default.
- W2017508840 creator A5019871869 @default.
- W2017508840 creator A5059602798 @default.
- W2017508840 date "2015-03-09" @default.
- W2017508840 modified "2023-10-10" @default.
- W2017508840 title "Backreaction and stochastic effects in single field inflation" @default.
- W2017508840 cites W111007863 @default.
- W2017508840 cites W1512591975 @default.
- W2017508840 cites W1519860601 @default.
- W2017508840 cites W1553535237 @default.
- W2017508840 cites W1568178795 @default.
- W2017508840 cites W1584940290 @default.
- W2017508840 cites W1590390162 @default.
- W2017508840 cites W1964514797 @default.
- W2017508840 cites W1965742833 @default.
- W2017508840 cites W1968754667 @default.
- W2017508840 cites W1970521426 @default.
- W2017508840 cites W1978644139 @default.
- W2017508840 cites W1980404296 @default.
- W2017508840 cites W1991308393 @default.
- W2017508840 cites W1992259402 @default.
- W2017508840 cites W1993357856 @default.
- W2017508840 cites W1994275230 @default.
- W2017508840 cites W1997095799 @default.
- W2017508840 cites W1999419759 @default.
- W2017508840 cites W1999483408 @default.
- W2017508840 cites W2011365476 @default.
- W2017508840 cites W2018252185 @default.
- W2017508840 cites W2035433892 @default.
- W2017508840 cites W2036234402 @default.
- W2017508840 cites W2045009398 @default.
- W2017508840 cites W2048111466 @default.
- W2017508840 cites W2048599878 @default.
- W2017508840 cites W2049992556 @default.
- W2017508840 cites W2050287430 @default.
- W2017508840 cites W2054597771 @default.
- W2017508840 cites W2057894735 @default.
- W2017508840 cites W2067377754 @default.
- W2017508840 cites W2069230998 @default.
- W2017508840 cites W2070953406 @default.
- W2017508840 cites W2076229751 @default.
- W2017508840 cites W2077083915 @default.
- W2017508840 cites W2077156351 @default.
- W2017508840 cites W2079547999 @default.
- W2017508840 cites W2079765375 @default.
- W2017508840 cites W2080702495 @default.
- W2017508840 cites W2083957346 @default.
- W2017508840 cites W2083975307 @default.
- W2017508840 cites W2085043700 @default.
- W2017508840 cites W2088262850 @default.
- W2017508840 cites W2088906070 @default.
- W2017508840 cites W2090365502 @default.
- W2017508840 cites W2094000099 @default.
- W2017508840 cites W2094806103 @default.
- W2017508840 cites W2105087564 @default.
- W2017508840 cites W2113006325 @default.
- W2017508840 cites W2116314129 @default.
- W2017508840 cites W2117128933 @default.
- W2017508840 cites W2122336004 @default.
- W2017508840 cites W2122954810 @default.
- W2017508840 cites W2124223201 @default.
- W2017508840 cites W2128149447 @default.
- W2017508840 cites W2134990923 @default.
- W2017508840 cites W2137642868 @default.
- W2017508840 cites W2139305106 @default.
- W2017508840 cites W2141299382 @default.
- W2017508840 cites W2146714580 @default.
- W2017508840 cites W2148732750 @default.
- W2017508840 cites W2148968450 @default.
- W2017508840 cites W2152900562 @default.
- W2017508840 cites W2155678178 @default.
- W2017508840 cites W2162605431 @default.
- W2017508840 cites W2165326943 @default.
- W2017508840 cites W2166490271 @default.
- W2017508840 cites W2169418432 @default.
- W2017508840 cites W2502188135 @default.
- W2017508840 cites W2595209810 @default.
- W2017508840 cites W3037429251 @default.
- W2017508840 cites W3098429340 @default.
- W2017508840 cites W3099573468 @default.
- W2017508840 cites W3100004924 @default.
- W2017508840 cites W3102983014 @default.
- W2017508840 cites W3104030722 @default.
- W2017508840 cites W3104117543 @default.
- W2017508840 cites W3104967443 @default.
- W2017508840 cites W3105467182 @default.
- W2017508840 cites W3105778080 @default.
- W2017508840 cites W3122220680 @default.
- W2017508840 cites W3125869493 @default.
- W2017508840 cites W4256093087 @default.
- W2017508840 doi "https://doi.org/10.1103/physrevd.91.063513" @default.
- W2017508840 hasPublicationYear "2015" @default.
- W2017508840 type Work @default.
- W2017508840 sameAs 2017508840 @default.
- W2017508840 citedByCount "34" @default.
- W2017508840 countsByYear W20175088402015 @default.
- W2017508840 countsByYear W20175088402016 @default.
- W2017508840 countsByYear W20175088402020 @default.
- W2017508840 countsByYear W20175088402021 @default.