Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017537474> ?p ?o ?g. }
- W2017537474 endingPage "1539" @default.
- W2017537474 startingPage "1529" @default.
- W2017537474 abstract "Stock market price index prediction is regarded as a challenging task of the financial time series prediction process. Support vector regression (SVR) has successfully solved prediction problems in many domains, including the stock market. This paper hybridizes SVR with the self-organizing feature map (SOFM) technique and a filter-based feature selection to reduce the cost of training time and to improve prediction accuracies. The hybrid system conducts the following processes: filter-based feature selection to choose important input attributes; SOFM algorithm to cluster the training samples; and SVR to predict the stock market price index. The proposed model was demonstrated using a real future dataset - Taiwan index futures (FITX) to predict the next day's price index. The experiment results show that the proposed SOFM-SVR is an improvement over the traditional single SVR in average prediction accuracy and training time." @default.
- W2017537474 created "2016-06-24" @default.
- W2017537474 creator A5042664432 @default.
- W2017537474 creator A5047430177 @default.
- W2017537474 date "2009-03-01" @default.
- W2017537474 modified "2023-10-10" @default.
- W2017537474 title "A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting" @default.
- W2017537474 cites W1483483523 @default.
- W2017537474 cites W1566994267 @default.
- W2017537474 cites W1573747491 @default.
- W2017537474 cites W1619226191 @default.
- W2017537474 cites W1965806369 @default.
- W2017537474 cites W1983220355 @default.
- W2017537474 cites W1985733926 @default.
- W2017537474 cites W1986078433 @default.
- W2017537474 cites W1988518729 @default.
- W2017537474 cites W2005248249 @default.
- W2017537474 cites W2006743577 @default.
- W2017537474 cites W2012079387 @default.
- W2017537474 cites W2017128157 @default.
- W2017537474 cites W2017337590 @default.
- W2017537474 cites W2024804972 @default.
- W2017537474 cites W2032170121 @default.
- W2017537474 cites W2038844583 @default.
- W2017537474 cites W2056489048 @default.
- W2017537474 cites W2062634819 @default.
- W2017537474 cites W2080265874 @default.
- W2017537474 cites W2081180521 @default.
- W2017537474 cites W2085034397 @default.
- W2017537474 cites W2085831731 @default.
- W2017537474 cites W2103780778 @default.
- W2017537474 cites W2104878355 @default.
- W2017537474 cites W2112865076 @default.
- W2017537474 cites W2127978942 @default.
- W2017537474 cites W2137634615 @default.
- W2017537474 cites W2142149253 @default.
- W2017537474 cites W2149223397 @default.
- W2017537474 cites W2158948182 @default.
- W2017537474 cites W2159494272 @default.
- W2017537474 cites W2168156818 @default.
- W2017537474 cites W2172073485 @default.
- W2017537474 cites W2172147742 @default.
- W2017537474 cites W4254527583 @default.
- W2017537474 cites W62687805 @default.
- W2017537474 doi "https://doi.org/10.1016/j.eswa.2007.11.062" @default.
- W2017537474 hasPublicationYear "2009" @default.
- W2017537474 type Work @default.
- W2017537474 sameAs 2017537474 @default.
- W2017537474 citedByCount "211" @default.
- W2017537474 countsByYear W20175374742012 @default.
- W2017537474 countsByYear W20175374742013 @default.
- W2017537474 countsByYear W20175374742014 @default.
- W2017537474 countsByYear W20175374742015 @default.
- W2017537474 countsByYear W20175374742016 @default.
- W2017537474 countsByYear W20175374742017 @default.
- W2017537474 countsByYear W20175374742018 @default.
- W2017537474 countsByYear W20175374742019 @default.
- W2017537474 countsByYear W20175374742020 @default.
- W2017537474 countsByYear W20175374742021 @default.
- W2017537474 countsByYear W20175374742022 @default.
- W2017537474 countsByYear W20175374742023 @default.
- W2017537474 crossrefType "journal-article" @default.
- W2017537474 hasAuthorship W2017537474A5042664432 @default.
- W2017537474 hasAuthorship W2017537474A5047430177 @default.
- W2017537474 hasConcept C106131492 @default.
- W2017537474 hasConcept C119857082 @default.
- W2017537474 hasConcept C12267149 @default.
- W2017537474 hasConcept C124101348 @default.
- W2017537474 hasConcept C127413603 @default.
- W2017537474 hasConcept C138885662 @default.
- W2017537474 hasConcept C148483581 @default.
- W2017537474 hasConcept C151730666 @default.
- W2017537474 hasConcept C153180895 @default.
- W2017537474 hasConcept C154945302 @default.
- W2017537474 hasConcept C204036174 @default.
- W2017537474 hasConcept C2776401178 @default.
- W2017537474 hasConcept C2780299701 @default.
- W2017537474 hasConcept C2780762169 @default.
- W2017537474 hasConcept C31972630 @default.
- W2017537474 hasConcept C41008148 @default.
- W2017537474 hasConcept C41895202 @default.
- W2017537474 hasConcept C78519656 @default.
- W2017537474 hasConcept C86803240 @default.
- W2017537474 hasConceptScore W2017537474C106131492 @default.
- W2017537474 hasConceptScore W2017537474C119857082 @default.
- W2017537474 hasConceptScore W2017537474C12267149 @default.
- W2017537474 hasConceptScore W2017537474C124101348 @default.
- W2017537474 hasConceptScore W2017537474C127413603 @default.
- W2017537474 hasConceptScore W2017537474C138885662 @default.
- W2017537474 hasConceptScore W2017537474C148483581 @default.
- W2017537474 hasConceptScore W2017537474C151730666 @default.
- W2017537474 hasConceptScore W2017537474C153180895 @default.
- W2017537474 hasConceptScore W2017537474C154945302 @default.
- W2017537474 hasConceptScore W2017537474C204036174 @default.
- W2017537474 hasConceptScore W2017537474C2776401178 @default.
- W2017537474 hasConceptScore W2017537474C2780299701 @default.
- W2017537474 hasConceptScore W2017537474C2780762169 @default.
- W2017537474 hasConceptScore W2017537474C31972630 @default.