Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017563313> ?p ?o ?g. }
- W2017563313 endingPage "274" @default.
- W2017563313 startingPage "255" @default.
- W2017563313 abstract "Arginine-mediated regulation is remarkably well conserved in very divergent bacteria, and shows a number of unusual features that distinguish arginine regulation from other transcriptional control mechanisms. The arginine repressor subunit consists of a basic N-terminal DNA-binding domain, which belongs to the winged helix-turn-helix family, connected through a flexible linker to an acidic C-terminal domain responsible for binding of arginine and assembly of the high-affinity holohexamer, which binds an approximately 40 bp target. To gain further insight into the molecular details of arginine repressor-operator interactions we have established a high resolution contact map of the argC operator from Bacillus stearothermophilus, a moderate thermophilic Gram-positive bacterium, and the argR operator from Thermotoga neapolitana, a Gram-negative hyperthermophile, with the corresponding ArgR proteins. Enzymatic and chemical footprinting have been combined with missing contact, pre-modification, base substitution, and small ligand binding interference techniques to gather information on backbone and base-specific contacts with major and minor groove determinants of the operators. Wild-type and mutant argC operators have been compared for their interaction with the repressor, using both in vivo and in vitro approaches. Our results indicate that the operators of B. stearothermophilus and T. neapolitana consist of two ARG box-like sequences, 18 bp imperfect palindromes, separated by two and three base-pairs, respectively, and that the repressors from thermophilic origin establish base-specific contacts with two major groove segments and the intervening minor groove of each ARG box, all aligned on one face of the helix. In contrast, no specific contacts are established in the minor groove facing the repressor in the centre of the operator, nevertheless this region plays a crucial structural role in complex formation, as indicated by mutant studies. This picture is reminiscent of arginine repressor binding in Escherichia coli, and therefore reinforces the uniform view of arginine regulation, but also reveals a number of striking differences at particular positions of the boxes and in the length and base-pair composition of the spacer connecting two ARG boxes in the operator. These might be responsible, in part, for subtle but important functional and mechanistic differences in the way species-specific repressors interact with their cognate target sites. These variations are underlined by the different behaviour of the repressors from E. coli, B. stearothermophilus and T. neapolitana in their potential to bind heterologous operators, their requirement for arginine, and the resistance of complex formation to non-specific competitor DNA. Our findings are discussed in view of the crystal structure of the arginine repressor from B. stearothermophilus." @default.
- W2017563313 created "2016-06-24" @default.
- W2017563313 creator A5007961723 @default.
- W2017563313 creator A5009652613 @default.
- W2017563313 creator A5041703127 @default.
- W2017563313 creator A5042869297 @default.
- W2017563313 creator A5048394470 @default.
- W2017563313 creator A5072298237 @default.
- W2017563313 creator A5085729827 @default.
- W2017563313 date "2002-01-01" @default.
- W2017563313 modified "2023-10-18" @default.
- W2017563313 title "Transcription regulation in thermophilic Bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions" @default.
- W2017563313 cites W1486968353 @default.
- W2017563313 cites W1496714136 @default.
- W2017563313 cites W1500280355 @default.
- W2017563313 cites W1508069518 @default.
- W2017563313 cites W1532522639 @default.
- W2017563313 cites W1538904365 @default.
- W2017563313 cites W1558516755 @default.
- W2017563313 cites W1578540728 @default.
- W2017563313 cites W1787819929 @default.
- W2017563313 cites W1794839330 @default.
- W2017563313 cites W1937790690 @default.
- W2017563313 cites W1961694377 @default.
- W2017563313 cites W1963558999 @default.
- W2017563313 cites W1965326671 @default.
- W2017563313 cites W1967329874 @default.
- W2017563313 cites W1969493916 @default.
- W2017563313 cites W1971922923 @default.
- W2017563313 cites W1975329612 @default.
- W2017563313 cites W1991486518 @default.
- W2017563313 cites W1994715746 @default.
- W2017563313 cites W1997093250 @default.
- W2017563313 cites W2001979955 @default.
- W2017563313 cites W2002268136 @default.
- W2017563313 cites W2009392277 @default.
- W2017563313 cites W2012351316 @default.
- W2017563313 cites W2012390301 @default.
- W2017563313 cites W2013538591 @default.
- W2017563313 cites W2014035248 @default.
- W2017563313 cites W2019410656 @default.
- W2017563313 cites W2020519908 @default.
- W2017563313 cites W2026991541 @default.
- W2017563313 cites W2036960625 @default.
- W2017563313 cites W2037898928 @default.
- W2017563313 cites W2044903767 @default.
- W2017563313 cites W2048438604 @default.
- W2017563313 cites W2050463607 @default.
- W2017563313 cites W2054309561 @default.
- W2017563313 cites W2058764769 @default.
- W2017563313 cites W2060159801 @default.
- W2017563313 cites W2061389151 @default.
- W2017563313 cites W2062125129 @default.
- W2017563313 cites W2074251882 @default.
- W2017563313 cites W2077347831 @default.
- W2017563313 cites W2088853825 @default.
- W2017563313 cites W2112751888 @default.
- W2017563313 cites W2114612057 @default.
- W2017563313 cites W2126234020 @default.
- W2017563313 cites W2131845465 @default.
- W2017563313 cites W2138270253 @default.
- W2017563313 cites W2151753931 @default.
- W2017563313 cites W2157455134 @default.
- W2017563313 cites W2163471249 @default.
- W2017563313 cites W2165090578 @default.
- W2017563313 cites W2166894101 @default.
- W2017563313 cites W2167960095 @default.
- W2017563313 cites W2271440286 @default.
- W2017563313 doi "https://doi.org/10.1006/jmbi.2001.5236" @default.
- W2017563313 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11786010" @default.
- W2017563313 hasPublicationYear "2002" @default.
- W2017563313 type Work @default.
- W2017563313 sameAs 2017563313 @default.
- W2017563313 citedByCount "24" @default.
- W2017563313 countsByYear W20175633132016 @default.
- W2017563313 countsByYear W20175633132017 @default.
- W2017563313 countsByYear W20175633132018 @default.
- W2017563313 countsByYear W20175633132020 @default.
- W2017563313 countsByYear W20175633132022 @default.
- W2017563313 crossrefType "journal-article" @default.
- W2017563313 hasAuthorship W2017563313A5007961723 @default.
- W2017563313 hasAuthorship W2017563313A5009652613 @default.
- W2017563313 hasAuthorship W2017563313A5041703127 @default.
- W2017563313 hasAuthorship W2017563313A5042869297 @default.
- W2017563313 hasAuthorship W2017563313A5048394470 @default.
- W2017563313 hasAuthorship W2017563313A5072298237 @default.
- W2017563313 hasAuthorship W2017563313A5085729827 @default.
- W2017563313 hasConcept C104317684 @default.
- W2017563313 hasConcept C143065580 @default.
- W2017563313 hasConcept C158448853 @default.
- W2017563313 hasConcept C181199279 @default.
- W2017563313 hasConcept C2777002520 @default.
- W2017563313 hasConcept C2778021871 @default.
- W2017563313 hasConcept C27911776 @default.
- W2017563313 hasConcept C3017666073 @default.
- W2017563313 hasConcept C54355233 @default.
- W2017563313 hasConcept C547475151 @default.
- W2017563313 hasConcept C552990157 @default.