Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017584501> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2017584501 endingPage "A242" @default.
- W2017584501 startingPage "A242" @default.
- W2017584501 abstract "Type 2 diabetes (T2D) is strongly associated with morbidity and mortality, and carries a heavy financial burden. An improved understanding of the factors that predict progression to prediabetes and T2D is warranted. Thus our objective was to identify these determinants, applying ‘big data’ analytic methods to electronic health care records (EHR) data. Using GNS Health care’s analytical platform (REFSTM), we built unbiased predictive models for progression to T2D, computationally exploring trillions of potential models, in Humedica data. Humedica’s data acquisition model aggregates de-identified EHR from providers across the continuum of care. Our study population consisted of 24,331 adults without history of prediabetes or T2D, from 2007-2012. Prediabetes was defined using World Health Organization criteria; incident T2D was identified using ICD-9 codes. Accuracy of prediction models was assessed using an area under the curve (AUC) statistic. We validated resulting prediction models in an independent dataset. Our baseline model accurately predicted progression to T2D from normoglycemia (AUC = 0.76). We validated this model with an independent dataset where the AUC increased to 0.78. When the model was extended to include time-varying covariates the AUC increased to 0.87. Our model of progression from normoglycemia to T2D consisted of established risk factors (blood glucose measures, hypertension, income, race, triglycerides, lipid disorders, and blood pressure), whereas predictors of progression to prediabetes included novel factors such as high-density lipoprotein, alanine aminotransferase, C-reactive protein, and core body temperature (AUC = 0.70). Using an extensive EHR database, we built accurate prediction models of diabetes risk using a hypothesis-free, machine-learning Bayesian approach, and validated them with an independent dataset. In doing so, we identified novel factors representing emerging areas of diabetes research and potential new targets for clinical management. Our ability to make individual T2D risk predictions has valuable applications to personalized medicine and clinical trial recruitment." @default.
- W2017584501 created "2016-06-24" @default.
- W2017584501 creator A5000513039 @default.
- W2017584501 creator A5007667789 @default.
- W2017584501 creator A5022574584 @default.
- W2017584501 creator A5054571533 @default.
- W2017584501 creator A5062312544 @default.
- W2017584501 creator A5068292746 @default.
- W2017584501 creator A5071031039 @default.
- W2017584501 creator A5074605903 @default.
- W2017584501 creator A5084783003 @default.
- W2017584501 date "2014-05-01" @default.
- W2017584501 modified "2023-09-27" @default.
- W2017584501 title "Identification of determinants of progression to type 2 diabetes using electronic health records and ‘big data’ analytics" @default.
- W2017584501 doi "https://doi.org/10.1016/j.jval.2014.03.1413" @default.
- W2017584501 hasPublicationYear "2014" @default.
- W2017584501 type Work @default.
- W2017584501 sameAs 2017584501 @default.
- W2017584501 citedByCount "1" @default.
- W2017584501 countsByYear W20175845012022 @default.
- W2017584501 crossrefType "journal-article" @default.
- W2017584501 hasAuthorship W2017584501A5000513039 @default.
- W2017584501 hasAuthorship W2017584501A5007667789 @default.
- W2017584501 hasAuthorship W2017584501A5022574584 @default.
- W2017584501 hasAuthorship W2017584501A5054571533 @default.
- W2017584501 hasAuthorship W2017584501A5062312544 @default.
- W2017584501 hasAuthorship W2017584501A5068292746 @default.
- W2017584501 hasAuthorship W2017584501A5071031039 @default.
- W2017584501 hasAuthorship W2017584501A5074605903 @default.
- W2017584501 hasAuthorship W2017584501A5084783003 @default.
- W2017584501 hasBestOaLocation W20175845011 @default.
- W2017584501 hasConcept C11783203 @default.
- W2017584501 hasConcept C119043178 @default.
- W2017584501 hasConcept C119857082 @default.
- W2017584501 hasConcept C124101348 @default.
- W2017584501 hasConcept C126322002 @default.
- W2017584501 hasConcept C134018914 @default.
- W2017584501 hasConcept C143998085 @default.
- W2017584501 hasConcept C160735492 @default.
- W2017584501 hasConcept C162324750 @default.
- W2017584501 hasConcept C2777180221 @default.
- W2017584501 hasConcept C2779134260 @default.
- W2017584501 hasConcept C2779668308 @default.
- W2017584501 hasConcept C2908647359 @default.
- W2017584501 hasConcept C3020144179 @default.
- W2017584501 hasConcept C41008148 @default.
- W2017584501 hasConcept C45804977 @default.
- W2017584501 hasConcept C50522688 @default.
- W2017584501 hasConcept C555293320 @default.
- W2017584501 hasConcept C71924100 @default.
- W2017584501 hasConcept C75684735 @default.
- W2017584501 hasConcept C99454951 @default.
- W2017584501 hasConceptScore W2017584501C11783203 @default.
- W2017584501 hasConceptScore W2017584501C119043178 @default.
- W2017584501 hasConceptScore W2017584501C119857082 @default.
- W2017584501 hasConceptScore W2017584501C124101348 @default.
- W2017584501 hasConceptScore W2017584501C126322002 @default.
- W2017584501 hasConceptScore W2017584501C134018914 @default.
- W2017584501 hasConceptScore W2017584501C143998085 @default.
- W2017584501 hasConceptScore W2017584501C160735492 @default.
- W2017584501 hasConceptScore W2017584501C162324750 @default.
- W2017584501 hasConceptScore W2017584501C2777180221 @default.
- W2017584501 hasConceptScore W2017584501C2779134260 @default.
- W2017584501 hasConceptScore W2017584501C2779668308 @default.
- W2017584501 hasConceptScore W2017584501C2908647359 @default.
- W2017584501 hasConceptScore W2017584501C3020144179 @default.
- W2017584501 hasConceptScore W2017584501C41008148 @default.
- W2017584501 hasConceptScore W2017584501C45804977 @default.
- W2017584501 hasConceptScore W2017584501C50522688 @default.
- W2017584501 hasConceptScore W2017584501C555293320 @default.
- W2017584501 hasConceptScore W2017584501C71924100 @default.
- W2017584501 hasConceptScore W2017584501C75684735 @default.
- W2017584501 hasConceptScore W2017584501C99454951 @default.
- W2017584501 hasIssue "3" @default.
- W2017584501 hasLocation W20175845011 @default.
- W2017584501 hasOpenAccess W2017584501 @default.
- W2017584501 hasPrimaryLocation W20175845011 @default.
- W2017584501 hasRelatedWork W1868182499 @default.
- W2017584501 hasRelatedWork W2046511454 @default.
- W2017584501 hasRelatedWork W2057655956 @default.
- W2017584501 hasRelatedWork W2091638536 @default.
- W2017584501 hasRelatedWork W2116657465 @default.
- W2017584501 hasRelatedWork W2809231857 @default.
- W2017584501 hasRelatedWork W293724581 @default.
- W2017584501 hasRelatedWork W3117885438 @default.
- W2017584501 hasRelatedWork W4210278249 @default.
- W2017584501 hasRelatedWork W4220718597 @default.
- W2017584501 hasVolume "17" @default.
- W2017584501 isParatext "false" @default.
- W2017584501 isRetracted "false" @default.
- W2017584501 magId "2017584501" @default.
- W2017584501 workType "article" @default.