Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017607249> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2017607249 endingPage "224" @default.
- W2017607249 startingPage "217" @default.
- W2017607249 abstract "Ports are primary generators of truck traffic in the United States. Seaport operations will require operational and infrastructure changes to maintain the growth of international cargo operations. Truck trip generation models will provide transportation planners and public agencies with valuable information necessary for prioritizing funds for roadway upgrade projects and port infrastructure modifications. A new methodology is presented that combines backpropagation neural networks (BPN) and time series to forecast inbound and outbound heavy truck movements at seaports. The new method uses vessel freight data to identify which parameters are relevant for use as model input in predicting truck traffic at seaports. The method is successfully applied to five ports in Florida—Miami, Tampa, Palm Beach, Jacksonville, and Everglades—thus demonstrating its transferability. Details are provided for the Port of Everglades. The commodities at this port are classified into tons, barrels, and containers. It was found that the primary factors affecting truck traffic are imported containers, imported tonnage, imported barrels, exported containers, exported tonnage, and the particular weekday of operation. Separate BPN models were developed for inbound and outbound truck traffic at the ports. The new method forecasts that the Port of Everglades will have a 33% increase in average daily inbound heavy trucks and a 30% increase in average daily outbound heavy trucks by 2005 (2000 is the base year). The accuracy of the inbound and the outbound truck models is 93% and 92%, respectively." @default.
- W2017607249 created "2016-06-24" @default.
- W2017607249 creator A5030661740 @default.
- W2017607249 date "2002-01-01" @default.
- W2017607249 modified "2023-09-25" @default.
- W2017607249 title "Use of Vessel Freight Data to Forecast Heavy Truck Movements at Seaports" @default.
- W2017607249 cites W2005599048 @default.
- W2017607249 cites W2062073241 @default.
- W2017607249 cites W2496531389 @default.
- W2017607249 doi "https://doi.org/10.3141/1804-29" @default.
- W2017607249 hasPublicationYear "2002" @default.
- W2017607249 type Work @default.
- W2017607249 sameAs 2017607249 @default.
- W2017607249 citedByCount "20" @default.
- W2017607249 countsByYear W20176072492012 @default.
- W2017607249 countsByYear W20176072492013 @default.
- W2017607249 countsByYear W20176072492014 @default.
- W2017607249 countsByYear W20176072492015 @default.
- W2017607249 countsByYear W20176072492018 @default.
- W2017607249 countsByYear W20176072492019 @default.
- W2017607249 countsByYear W20176072492020 @default.
- W2017607249 countsByYear W20176072492021 @default.
- W2017607249 countsByYear W20176072492023 @default.
- W2017607249 crossrefType "journal-article" @default.
- W2017607249 hasAuthorship W2017607249A5030661740 @default.
- W2017607249 hasConcept C111368507 @default.
- W2017607249 hasConcept C111919701 @default.
- W2017607249 hasConcept C119599485 @default.
- W2017607249 hasConcept C127313418 @default.
- W2017607249 hasConcept C127413603 @default.
- W2017607249 hasConcept C171146098 @default.
- W2017607249 hasConcept C207512268 @default.
- W2017607249 hasConcept C22212356 @default.
- W2017607249 hasConcept C2780615140 @default.
- W2017607249 hasConcept C32802771 @default.
- W2017607249 hasConcept C36656581 @default.
- W2017607249 hasConcept C38652104 @default.
- W2017607249 hasConcept C41008148 @default.
- W2017607249 hasConcept C52121051 @default.
- W2017607249 hasConceptScore W2017607249C111368507 @default.
- W2017607249 hasConceptScore W2017607249C111919701 @default.
- W2017607249 hasConceptScore W2017607249C119599485 @default.
- W2017607249 hasConceptScore W2017607249C127313418 @default.
- W2017607249 hasConceptScore W2017607249C127413603 @default.
- W2017607249 hasConceptScore W2017607249C171146098 @default.
- W2017607249 hasConceptScore W2017607249C207512268 @default.
- W2017607249 hasConceptScore W2017607249C22212356 @default.
- W2017607249 hasConceptScore W2017607249C2780615140 @default.
- W2017607249 hasConceptScore W2017607249C32802771 @default.
- W2017607249 hasConceptScore W2017607249C36656581 @default.
- W2017607249 hasConceptScore W2017607249C38652104 @default.
- W2017607249 hasConceptScore W2017607249C41008148 @default.
- W2017607249 hasConceptScore W2017607249C52121051 @default.
- W2017607249 hasIssue "1" @default.
- W2017607249 hasLocation W20176072491 @default.
- W2017607249 hasOpenAccess W2017607249 @default.
- W2017607249 hasPrimaryLocation W20176072491 @default.
- W2017607249 hasRelatedWork W1966195640 @default.
- W2017607249 hasRelatedWork W1987861211 @default.
- W2017607249 hasRelatedWork W2017607249 @default.
- W2017607249 hasRelatedWork W2052236838 @default.
- W2017607249 hasRelatedWork W2356055768 @default.
- W2017607249 hasRelatedWork W405692687 @default.
- W2017607249 hasRelatedWork W4253537475 @default.
- W2017607249 hasRelatedWork W598229865 @default.
- W2017607249 hasRelatedWork W618053692 @default.
- W2017607249 hasRelatedWork W635847230 @default.
- W2017607249 hasVolume "1804" @default.
- W2017607249 isParatext "false" @default.
- W2017607249 isRetracted "false" @default.
- W2017607249 magId "2017607249" @default.
- W2017607249 workType "article" @default.