Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017620971> ?p ?o ?g. }
- W2017620971 endingPage "52" @default.
- W2017620971 startingPage "26" @default.
- W2017620971 abstract "Abstract Particle swarm optimization (PSO) has suffered from premature convergence and lacked diversity for complex problems since its inception. An emerging advancement in PSO is multi-swarm PSO (MS-PSO) which is designed to increase the diversity of swarms. However, most MS-PSOs were developed for particular problems so their search capability on diverse landscapes is still less than satisfactory. Moreover, research on MS-PSO has so far treated the sub-swarms as cooperative groups with minimum competition (if not none). In addition, the size of each sub-swarm is set to be fixed which may encounter excessive computational cost. To address these issues, a novel optimizer using Adaptive Heterogeneous Particle SwarmS (AHPS2) is developed in this research. In AHPS2, multiple heterogeneous swarms, each consisting of a group of homogenous particles having similar learning strategy, are introduced. Two complementary search techniques, comprehensive learning and a subgradient method, are studied. To best take advantage of the heterogeneous learning strategies, an adaptive competition strategy is proposed so the size of each swarm can be dynamically adjusted based on its group performance. The analyses of the swarm heterogeneity and the competition models are presented to validate the effectiveness. Furthermore, comparisons between AHPS2 and state-of-the-art algorithms are grouped into three categories: 36 regular benchmark functions (30-dimensional), 20 large-scale benchmark functions (1000-dimensional) and 3 real-world problems. Experimental results show that AHPS2 displays a better or comparable performance compared to the other swarm-based or evolutionary algorithms in terms of solution accuracy and statistical tests." @default.
- W2017620971 created "2016-06-24" @default.
- W2017620971 creator A5025856446 @default.
- W2017620971 creator A5034285792 @default.
- W2017620971 creator A5058644929 @default.
- W2017620971 creator A5069823101 @default.
- W2017620971 creator A5089704892 @default.
- W2017620971 date "2014-10-01" @default.
- W2017620971 modified "2023-09-27" @default.
- W2017620971 title "AHPS2: An optimizer using adaptive heterogeneous particle swarms" @default.
- W2017620971 cites W1500783943 @default.
- W2017620971 cites W1560973405 @default.
- W2017620971 cites W1973537145 @default.
- W2017620971 cites W1973603338 @default.
- W2017620971 cites W1977270579 @default.
- W2017620971 cites W1980152637 @default.
- W2017620971 cites W1987092188 @default.
- W2017620971 cites W1993557863 @default.
- W2017620971 cites W1996936486 @default.
- W2017620971 cites W2008316291 @default.
- W2017620971 cites W2017196268 @default.
- W2017620971 cites W2020903001 @default.
- W2017620971 cites W2023883389 @default.
- W2017620971 cites W2024267353 @default.
- W2017620971 cites W2024723354 @default.
- W2017620971 cites W2030911177 @default.
- W2017620971 cites W2033108330 @default.
- W2017620971 cites W2040166386 @default.
- W2017620971 cites W2045547871 @default.
- W2017620971 cites W2055885994 @default.
- W2017620971 cites W2056181291 @default.
- W2017620971 cites W2059836574 @default.
- W2017620971 cites W2066573038 @default.
- W2017620971 cites W2077418700 @default.
- W2017620971 cites W2081659494 @default.
- W2017620971 cites W2087510004 @default.
- W2017620971 cites W2087778535 @default.
- W2017620971 cites W2091207396 @default.
- W2017620971 cites W2092442916 @default.
- W2017620971 cites W2093279886 @default.
- W2017620971 cites W2093862622 @default.
- W2017620971 cites W2097360211 @default.
- W2017620971 cites W2099087967 @default.
- W2017620971 cites W2099568179 @default.
- W2017620971 cites W2100004220 @default.
- W2017620971 cites W2118616578 @default.
- W2017620971 cites W2118840131 @default.
- W2017620971 cites W2119917516 @default.
- W2017620971 cites W2121429049 @default.
- W2017620971 cites W2124289529 @default.
- W2017620971 cites W2130368085 @default.
- W2017620971 cites W2131613989 @default.
- W2017620971 cites W2139339670 @default.
- W2017620971 cites W2140727865 @default.
- W2017620971 cites W2142465225 @default.
- W2017620971 cites W2143560894 @default.
- W2017620971 cites W2144341408 @default.
- W2017620971 cites W2144742062 @default.
- W2017620971 cites W2152195021 @default.
- W2017620971 cites W2153272405 @default.
- W2017620971 cites W2155005783 @default.
- W2017620971 cites W2156566884 @default.
- W2017620971 cites W2168819089 @default.
- W2017620971 cites W2168964662 @default.
- W2017620971 cites W2169245194 @default.
- W2017620971 cites W2243381708 @default.
- W2017620971 cites W2955541341 @default.
- W2017620971 cites W4301003109 @default.
- W2017620971 cites W88852986 @default.
- W2017620971 cites W9691476 @default.
- W2017620971 doi "https://doi.org/10.1016/j.ins.2014.04.043" @default.
- W2017620971 hasPublicationYear "2014" @default.
- W2017620971 type Work @default.
- W2017620971 sameAs 2017620971 @default.
- W2017620971 citedByCount "18" @default.
- W2017620971 countsByYear W20176209712015 @default.
- W2017620971 countsByYear W20176209712016 @default.
- W2017620971 countsByYear W20176209712017 @default.
- W2017620971 countsByYear W20176209712018 @default.
- W2017620971 countsByYear W20176209712019 @default.
- W2017620971 countsByYear W20176209712020 @default.
- W2017620971 crossrefType "journal-article" @default.
- W2017620971 hasAuthorship W2017620971A5025856446 @default.
- W2017620971 hasAuthorship W2017620971A5034285792 @default.
- W2017620971 hasAuthorship W2017620971A5058644929 @default.
- W2017620971 hasAuthorship W2017620971A5069823101 @default.
- W2017620971 hasAuthorship W2017620971A5089704892 @default.
- W2017620971 hasConcept C111368507 @default.
- W2017620971 hasConcept C11413529 @default.
- W2017620971 hasConcept C126255220 @default.
- W2017620971 hasConcept C127313418 @default.
- W2017620971 hasConcept C2778517922 @default.
- W2017620971 hasConcept C33923547 @default.
- W2017620971 hasConcept C41008148 @default.
- W2017620971 hasConcept C85617194 @default.
- W2017620971 hasConceptScore W2017620971C111368507 @default.
- W2017620971 hasConceptScore W2017620971C11413529 @default.
- W2017620971 hasConceptScore W2017620971C126255220 @default.