Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017646651> ?p ?o ?g. }
- W2017646651 endingPage "2785" @default.
- W2017646651 startingPage "2776" @default.
- W2017646651 abstract "ConspectusChemistry, particularly organic chemistry, is mostly concerned with functional groups: amines, amides, alcohols, ketones, and so forth. This is because the reactivity of molecules can be categorized in terms of the reactions of these functional groups, and by the influence of other adjacent groups in the molecule. These simple truths ought to be reflected in the electronic structure and electronic energy of molecules, as reactivity is determined by electronic structure. However, sophisticated ab initio quantum calculations of the molecular electronic energy usually do not make these truths apparent. In recent years, several computational chemistry groups have discovered methods for estimating the electronic energy as a sum of the energies of small molecular fragments, or small sets of groups. By decomposing molecules into such fragments of adjacent functional groups, researchers can estimate the electronic energy to chemical accuracy; not just qualitative trends, but accurate enough to understand reactivity. In addition, this has the benefit of cutting down on both computational time and cost, as the necessary calculation time increases rapidly with an increasing number of electrons. Even with steady advances in computer technology, progress in the study of large molecules is slow.In this Account, we describe two related “fragmentation” methods for treating molecules, the combined fragmentation method (CFM) and systematic molecular fragmentation (SMF). In addition, we show how we can use the SMF approach to estimate the energy and properties of nonconducting crystals, by fragmenting the periodic crystal structure into relatively small pieces. A large part of this Account is devoted to simple overviews of how the methods work.We also discuss the application of these approaches to calculating reactivity and other useful properties, such as the NMR and vibrational spectra of molecules and crystals. These applications rely on the ability of these fragmentation methods to accurately estimate derivatives of the molecular and crystal energies. Finally, to provide some common applications of CFM and SMF, we present some specific examples of energy calculations for moderately large molecules. For computational chemists, this fragmentation approach represents an important practical advance. It reduces the computer time required to estimate the energies of molecules so dramatically, that accurate calculations of the energies and reactivity of very large organic and biological molecules become feasible." @default.
- W2017646651 created "2016-06-24" @default.
- W2017646651 creator A5021439072 @default.
- W2017646651 creator A5047363342 @default.
- W2017646651 creator A5070789611 @default.
- W2017646651 date "2014-06-27" @default.
- W2017646651 modified "2023-09-29" @default.
- W2017646651 title "The Combined Fragmentation and Systematic Molecular Fragmentation Methods" @default.
- W2017646651 cites W1501974651 @default.
- W2017646651 cites W1965425135 @default.
- W2017646651 cites W1968659118 @default.
- W2017646651 cites W1969616449 @default.
- W2017646651 cites W1973042449 @default.
- W2017646651 cites W1983598802 @default.
- W2017646651 cites W1984711488 @default.
- W2017646651 cites W1985234154 @default.
- W2017646651 cites W1993383767 @default.
- W2017646651 cites W1999647126 @default.
- W2017646651 cites W2016945756 @default.
- W2017646651 cites W2019970752 @default.
- W2017646651 cites W2020948864 @default.
- W2017646651 cites W2024736108 @default.
- W2017646651 cites W2028867535 @default.
- W2017646651 cites W2033777798 @default.
- W2017646651 cites W2036836472 @default.
- W2017646651 cites W2037601915 @default.
- W2017646651 cites W2038100362 @default.
- W2017646651 cites W2040685854 @default.
- W2017646651 cites W2048988186 @default.
- W2017646651 cites W2057594036 @default.
- W2017646651 cites W2063589866 @default.
- W2017646651 cites W2064308320 @default.
- W2017646651 cites W2068089289 @default.
- W2017646651 cites W2068758087 @default.
- W2017646651 cites W2069028876 @default.
- W2017646651 cites W2078432797 @default.
- W2017646651 cites W2079889960 @default.
- W2017646651 cites W2081426695 @default.
- W2017646651 cites W2085561623 @default.
- W2017646651 cites W2085966856 @default.
- W2017646651 cites W2088885430 @default.
- W2017646651 cites W2109209957 @default.
- W2017646651 cites W2109221152 @default.
- W2017646651 cites W2131260498 @default.
- W2017646651 cites W2334781727 @default.
- W2017646651 doi "https://doi.org/10.1021/ar500088d" @default.
- W2017646651 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24972052" @default.
- W2017646651 hasPublicationYear "2014" @default.
- W2017646651 type Work @default.
- W2017646651 sameAs 2017646651 @default.
- W2017646651 citedByCount "71" @default.
- W2017646651 countsByYear W20176466512014 @default.
- W2017646651 countsByYear W20176466512015 @default.
- W2017646651 countsByYear W20176466512016 @default.
- W2017646651 countsByYear W20176466512017 @default.
- W2017646651 countsByYear W20176466512018 @default.
- W2017646651 countsByYear W20176466512019 @default.
- W2017646651 countsByYear W20176466512020 @default.
- W2017646651 countsByYear W20176466512021 @default.
- W2017646651 countsByYear W20176466512022 @default.
- W2017646651 countsByYear W20176466512023 @default.
- W2017646651 crossrefType "journal-article" @default.
- W2017646651 hasAuthorship W2017646651A5021439072 @default.
- W2017646651 hasAuthorship W2017646651A5047363342 @default.
- W2017646651 hasAuthorship W2017646651A5070789611 @default.
- W2017646651 hasConcept C111919701 @default.
- W2017646651 hasConcept C121332964 @default.
- W2017646651 hasConcept C121864883 @default.
- W2017646651 hasConcept C142724271 @default.
- W2017646651 hasConcept C147597530 @default.
- W2017646651 hasConcept C159467904 @default.
- W2017646651 hasConcept C171250308 @default.
- W2017646651 hasConcept C178790620 @default.
- W2017646651 hasConcept C185592680 @default.
- W2017646651 hasConcept C191015642 @default.
- W2017646651 hasConcept C192562407 @default.
- W2017646651 hasConcept C204787440 @default.
- W2017646651 hasConcept C22994065 @default.
- W2017646651 hasConcept C2776910235 @default.
- W2017646651 hasConcept C2781442258 @default.
- W2017646651 hasConcept C32909587 @default.
- W2017646651 hasConcept C41008148 @default.
- W2017646651 hasConcept C71924100 @default.
- W2017646651 hasConcept C86025842 @default.
- W2017646651 hasConcept C93275456 @default.
- W2017646651 hasConceptScore W2017646651C111919701 @default.
- W2017646651 hasConceptScore W2017646651C121332964 @default.
- W2017646651 hasConceptScore W2017646651C121864883 @default.
- W2017646651 hasConceptScore W2017646651C142724271 @default.
- W2017646651 hasConceptScore W2017646651C147597530 @default.
- W2017646651 hasConceptScore W2017646651C159467904 @default.
- W2017646651 hasConceptScore W2017646651C171250308 @default.
- W2017646651 hasConceptScore W2017646651C178790620 @default.
- W2017646651 hasConceptScore W2017646651C185592680 @default.
- W2017646651 hasConceptScore W2017646651C191015642 @default.
- W2017646651 hasConceptScore W2017646651C192562407 @default.
- W2017646651 hasConceptScore W2017646651C204787440 @default.
- W2017646651 hasConceptScore W2017646651C22994065 @default.