Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017646730> ?p ?o ?g. }
- W2017646730 endingPage "34" @default.
- W2017646730 startingPage "17" @default.
- W2017646730 abstract "The stratigraphic architecture of carbonate successions that develop on geographically isolated islands reflects the balance between sea-level highstands, lowstands, and tectonic activity. This is readily apparent in the Tertiary carbonate sequences on the Cayman Islands that are formed of the Bluff Group, which includes the Brac Formation (Lower Oligocene), Cayman Formation (Middle Miocene), and Pedro Castle Formation (Middle Pliocene). These strata are overlain by the Pleistocene Ironshore Formation. The unconformities that define the boundaries between these formations are variable because some developed during one cycle of past erosion, others developed through two or more past erosional cycles, and some are still developing today. Some unconformities, like the one at the top of the Cayman Formation, are geographically variable because they underwent different developmental histories in different areas. The challenge with architectural complex successions, like those on the Cayman Islands, is that of deciphering the impact of sea-level changes as opposed to tectonic influences. During sea-level lowstands, the older carbonate successions were exposed on land and modified by surface and subsurface karst development. At the same time, marine erosional processes affected the coastal areas. Surface karst modification, which commonly produced rugged topographies with erosional relief at least 62 m, was controlled largely by rainfall, runoff, and stratal dip. Weathering on Grand Cayman at the end of the Miocene, for example, produced a dish-shaped topography with elevated peripheral rims. In contrast, uplift of the east end of Cayman Brac between the Late Pliocene (3.6 Ma) and ~ 400 ka, elevated the basal part of the Cayman Formation 33 m above sea level. Subsequent karst development, which is still ongoing today, removed most of the Cayman Formation on the eastern part of the island and produced peripheral rims that are higher than those on Grand Cayman. During some lowstands, like that between the Late Pliocene and ~ 400 ka, coeval coastal erosion led to the development of coastal benches that cut into the older carbonate strata. The combination of karst development in the islands' interiors and coastal erosion produced complex, rugged topographies that strongly influenced patterns of deposition during the following highstand. The complex stratigraphic architecture of the carbonate successions on the Cayman Islands reflects the variable impact of tectonics, karst development, and coastal erosion that was associated with each lowstand–highstand cycle." @default.
- W2017646730 created "2016-06-24" @default.
- W2017646730 creator A5034108413 @default.
- W2017646730 creator A5055360910 @default.
- W2017646730 date "2014-05-01" @default.
- W2017646730 modified "2023-10-18" @default.
- W2017646730 title "Deciphering the impact of sea-level changes and tectonic movement on erosional sequence boundaries in carbonate successions: A case study from Tertiary strata on Grand Cayman and Cayman Brac, British West Indies" @default.
- W2017646730 cites W1966564380 @default.
- W2017646730 cites W1966874500 @default.
- W2017646730 cites W1972262305 @default.
- W2017646730 cites W1972363720 @default.
- W2017646730 cites W1974227389 @default.
- W2017646730 cites W1979381341 @default.
- W2017646730 cites W1982414600 @default.
- W2017646730 cites W1988986816 @default.
- W2017646730 cites W1989887782 @default.
- W2017646730 cites W1994453510 @default.
- W2017646730 cites W1998468633 @default.
- W2017646730 cites W2001388672 @default.
- W2017646730 cites W2005596384 @default.
- W2017646730 cites W2008973855 @default.
- W2017646730 cites W2013659886 @default.
- W2017646730 cites W2014737435 @default.
- W2017646730 cites W2017373235 @default.
- W2017646730 cites W2019430636 @default.
- W2017646730 cites W2020547979 @default.
- W2017646730 cites W2023189666 @default.
- W2017646730 cites W2029039106 @default.
- W2017646730 cites W2029285401 @default.
- W2017646730 cites W2033822683 @default.
- W2017646730 cites W2033854566 @default.
- W2017646730 cites W2040637297 @default.
- W2017646730 cites W2041374973 @default.
- W2017646730 cites W2042785225 @default.
- W2017646730 cites W2047527622 @default.
- W2017646730 cites W2055312078 @default.
- W2017646730 cites W2059420053 @default.
- W2017646730 cites W2065810395 @default.
- W2017646730 cites W2072935186 @default.
- W2017646730 cites W2079906257 @default.
- W2017646730 cites W2079971785 @default.
- W2017646730 cites W2081845564 @default.
- W2017646730 cites W2082864569 @default.
- W2017646730 cites W2089623158 @default.
- W2017646730 cites W2092860020 @default.
- W2017646730 cites W2094681075 @default.
- W2017646730 cites W2095125137 @default.
- W2017646730 cites W2095328528 @default.
- W2017646730 cites W2098013508 @default.
- W2017646730 cites W2107552910 @default.
- W2017646730 cites W2119932679 @default.
- W2017646730 cites W2123936849 @default.
- W2017646730 cites W2124107627 @default.
- W2017646730 cites W2129192242 @default.
- W2017646730 cites W2133557048 @default.
- W2017646730 cites W2138026377 @default.
- W2017646730 cites W2138474813 @default.
- W2017646730 cites W2139933207 @default.
- W2017646730 cites W2146101666 @default.
- W2017646730 cites W2153985161 @default.
- W2017646730 cites W2158638952 @default.
- W2017646730 cites W2160308705 @default.
- W2017646730 cites W2166389443 @default.
- W2017646730 cites W2278306241 @default.
- W2017646730 cites W2313449040 @default.
- W2017646730 cites W895824453 @default.
- W2017646730 doi "https://doi.org/10.1016/j.sedgeo.2014.02.007" @default.
- W2017646730 hasPublicationYear "2014" @default.
- W2017646730 type Work @default.
- W2017646730 sameAs 2017646730 @default.
- W2017646730 citedByCount "11" @default.
- W2017646730 countsByYear W20176467302015 @default.
- W2017646730 countsByYear W20176467302016 @default.
- W2017646730 countsByYear W20176467302017 @default.
- W2017646730 countsByYear W20176467302019 @default.
- W2017646730 countsByYear W20176467302021 @default.
- W2017646730 countsByYear W20176467302022 @default.
- W2017646730 crossrefType "journal-article" @default.
- W2017646730 hasAuthorship W2017646730A5034108413 @default.
- W2017646730 hasAuthorship W2017646730A5055360910 @default.
- W2017646730 hasConcept C109007969 @default.
- W2017646730 hasConcept C111368507 @default.
- W2017646730 hasConcept C127313418 @default.
- W2017646730 hasConcept C139419234 @default.
- W2017646730 hasConcept C146588470 @default.
- W2017646730 hasConcept C151730666 @default.
- W2017646730 hasConcept C182348080 @default.
- W2017646730 hasConcept C191735495 @default.
- W2017646730 hasConcept C191897082 @default.
- W2017646730 hasConcept C192562407 @default.
- W2017646730 hasConcept C2778609275 @default.
- W2017646730 hasConcept C2780659211 @default.
- W2017646730 hasConcept C53570757 @default.
- W2017646730 hasConcept C74501621 @default.
- W2017646730 hasConcept C77928131 @default.
- W2017646730 hasConceptScore W2017646730C109007969 @default.
- W2017646730 hasConceptScore W2017646730C111368507 @default.
- W2017646730 hasConceptScore W2017646730C127313418 @default.