Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017652104> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2017652104 endingPage "406" @default.
- W2017652104 startingPage "389" @default.
- W2017652104 abstract "We consider polynomial maps described by so-called (multivariate) linearized polynomials. These polynomials are defined using a fixed prime power, say q. Linearized polynomials have no mixed terms. Considering invertible polynomial maps without mixed terms over a characteristic zero field, we will only obtain (up to a linear transformation of the variables) triangular maps, which are the most basic examples of polynomial automorphisms. However, over the finite field Fq automorphisms defined by linearized polynomials have (in general) an entirely different structure. Namely, we will show that the linearized polynomial maps over Fq are in one-to-one correspondence with matrices having coefficients in a univariate polynomial ring over Fq. Furthermore, composition of polynomial maps translates to matrix multiplication, implying that invertible linearized polynomial maps correspond to invertible matrices. This alternate description of the linearized polynomial automorphism subgroup leads to the solution of many famous conjectures (most notably, the Jacobian Conjecture) for this kind of polynomials and polynomial maps." @default.
- W2017652104 created "2016-06-24" @default.
- W2017652104 creator A5050340151 @default.
- W2017652104 date "2014-02-01" @default.
- W2017652104 modified "2023-10-17" @default.
- W2017652104 title "Linearized polynomial maps over finite fields" @default.
- W2017652104 cites W1497528749 @default.
- W2017652104 cites W1601054726 @default.
- W2017652104 cites W1675734966 @default.
- W2017652104 cites W1675890124 @default.
- W2017652104 cites W1981336002 @default.
- W2017652104 cites W1984088659 @default.
- W2017652104 cites W1996310087 @default.
- W2017652104 cites W2035280681 @default.
- W2017652104 cites W2044413922 @default.
- W2017652104 cites W2081461845 @default.
- W2017652104 cites W2092976320 @default.
- W2017652104 cites W2158031396 @default.
- W2017652104 cites W2170924867 @default.
- W2017652104 cites W2602139372 @default.
- W2017652104 cites W2963082233 @default.
- W2017652104 cites W3103895476 @default.
- W2017652104 doi "https://doi.org/10.1016/j.jalgebra.2013.10.013" @default.
- W2017652104 hasPublicationYear "2014" @default.
- W2017652104 type Work @default.
- W2017652104 sameAs 2017652104 @default.
- W2017652104 citedByCount "2" @default.
- W2017652104 countsByYear W20176521042016 @default.
- W2017652104 countsByYear W20176521042020 @default.
- W2017652104 crossrefType "journal-article" @default.
- W2017652104 hasAuthorship W2017652104A5050340151 @default.
- W2017652104 hasBestOaLocation W20176521042 @default.
- W2017652104 hasConcept C101044782 @default.
- W2017652104 hasConcept C101525915 @default.
- W2017652104 hasConcept C105795698 @default.
- W2017652104 hasConcept C114614502 @default.
- W2017652104 hasConcept C118615104 @default.
- W2017652104 hasConcept C118712358 @default.
- W2017652104 hasConcept C126352355 @default.
- W2017652104 hasConcept C134306372 @default.
- W2017652104 hasConcept C161584116 @default.
- W2017652104 hasConcept C199163554 @default.
- W2017652104 hasConcept C202444582 @default.
- W2017652104 hasConcept C33923547 @default.
- W2017652104 hasConcept C42321380 @default.
- W2017652104 hasConcept C45025165 @default.
- W2017652104 hasConcept C52153879 @default.
- W2017652104 hasConcept C77926391 @default.
- W2017652104 hasConcept C90119067 @default.
- W2017652104 hasConcept C96442724 @default.
- W2017652104 hasConcept C9652623 @default.
- W2017652104 hasConcept C97395012 @default.
- W2017652104 hasConceptScore W2017652104C101044782 @default.
- W2017652104 hasConceptScore W2017652104C101525915 @default.
- W2017652104 hasConceptScore W2017652104C105795698 @default.
- W2017652104 hasConceptScore W2017652104C114614502 @default.
- W2017652104 hasConceptScore W2017652104C118615104 @default.
- W2017652104 hasConceptScore W2017652104C118712358 @default.
- W2017652104 hasConceptScore W2017652104C126352355 @default.
- W2017652104 hasConceptScore W2017652104C134306372 @default.
- W2017652104 hasConceptScore W2017652104C161584116 @default.
- W2017652104 hasConceptScore W2017652104C199163554 @default.
- W2017652104 hasConceptScore W2017652104C202444582 @default.
- W2017652104 hasConceptScore W2017652104C33923547 @default.
- W2017652104 hasConceptScore W2017652104C42321380 @default.
- W2017652104 hasConceptScore W2017652104C45025165 @default.
- W2017652104 hasConceptScore W2017652104C52153879 @default.
- W2017652104 hasConceptScore W2017652104C77926391 @default.
- W2017652104 hasConceptScore W2017652104C90119067 @default.
- W2017652104 hasConceptScore W2017652104C96442724 @default.
- W2017652104 hasConceptScore W2017652104C9652623 @default.
- W2017652104 hasConceptScore W2017652104C97395012 @default.
- W2017652104 hasLocation W20176521041 @default.
- W2017652104 hasLocation W20176521042 @default.
- W2017652104 hasLocation W20176521043 @default.
- W2017652104 hasOpenAccess W2017652104 @default.
- W2017652104 hasPrimaryLocation W20176521041 @default.
- W2017652104 hasRelatedWork W1543706171 @default.
- W2017652104 hasRelatedWork W1576380577 @default.
- W2017652104 hasRelatedWork W2017652104 @default.
- W2017652104 hasRelatedWork W2068749660 @default.
- W2017652104 hasRelatedWork W2288813390 @default.
- W2017652104 hasRelatedWork W2806971837 @default.
- W2017652104 hasRelatedWork W2950252413 @default.
- W2017652104 hasRelatedWork W2953195997 @default.
- W2017652104 hasRelatedWork W4249593543 @default.
- W2017652104 hasRelatedWork W4302561465 @default.
- W2017652104 hasVolume "399" @default.
- W2017652104 isParatext "false" @default.
- W2017652104 isRetracted "false" @default.
- W2017652104 magId "2017652104" @default.
- W2017652104 workType "article" @default.