Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017661312> ?p ?o ?g. }
- W2017661312 endingPage "343" @default.
- W2017661312 startingPage "323" @default.
- W2017661312 abstract "This paper describes the spatial interpolation of daily minimum air temperature using a feed-forward back-propagation neural network. Simple network configurations were trained to predict minimum temperature using as inputs: (1) date and terrain variables; (2) temperature observations at a number of neighbouring locations; (3) date, terrain variables and neighbouring temperature observations. This is the first time that trend and spatial association are explicitly considered together when interpolating using a neural network. The internal weights given to different inputs to the network were analysed to estimate the degree of spatial correlation between neighbouring stations in addition to the most influential variables contributing to the underlying trend. The spatial distribution of daily minimum temperature was estimated with the greatest accuracy by a network trained on the most comprehensive data set (3). The best model for the prediction of temperature accounts for 93% of the variance, measured by the correlation between independent estimated and observed values over a full year. This is comparable to accuracies reported in the literature using other approaches such as ordinary kriging of the residuals of multi-variate linear regression or partial thin plate splines. An advantage of this method is that the guiding variables are not assumed necessarily to be linearly related with the data being interpolated, and combinative effects are taken into account. Analysis of the internal network weights confirms that the networks are able to select adaptively between trend and covariance components of the interpolation function. Example interpolated daily minimum temperature surfaces for a 100 km x 100 km area in Yorkshire, UK, were generated using the selected network architectures to illustrate the results achievable with an ANN." @default.
- W2017661312 created "2016-06-24" @default.
- W2017661312 creator A5011014550 @default.
- W2017661312 creator A5084557725 @default.
- W2017661312 creator A5086122397 @default.
- W2017661312 date "2001-06-01" @default.
- W2017661312 modified "2023-10-16" @default.
- W2017661312 title "Artificial neural networks as a tool for spatial interpolation" @default.
- W2017661312 cites W1498436455 @default.
- W2017661312 cites W1975352104 @default.
- W2017661312 cites W1980127326 @default.
- W2017661312 cites W1980200922 @default.
- W2017661312 cites W2023748461 @default.
- W2017661312 cites W2045039773 @default.
- W2017661312 cites W2076358440 @default.
- W2017661312 cites W2106446218 @default.
- W2017661312 cites W2126391169 @default.
- W2017661312 cites W2172009270 @default.
- W2017661312 cites W2221471740 @default.
- W2017661312 cites W2320601661 @default.
- W2017661312 cites W2335171829 @default.
- W2017661312 cites W52495224 @default.
- W2017661312 cites W950822489 @default.
- W2017661312 doi "https://doi.org/10.1080/13658810110038951" @default.
- W2017661312 hasPublicationYear "2001" @default.
- W2017661312 type Work @default.
- W2017661312 sameAs 2017661312 @default.
- W2017661312 citedByCount "73" @default.
- W2017661312 countsByYear W20176613122012 @default.
- W2017661312 countsByYear W20176613122013 @default.
- W2017661312 countsByYear W20176613122014 @default.
- W2017661312 countsByYear W20176613122015 @default.
- W2017661312 countsByYear W20176613122016 @default.
- W2017661312 countsByYear W20176613122017 @default.
- W2017661312 countsByYear W20176613122018 @default.
- W2017661312 countsByYear W20176613122019 @default.
- W2017661312 countsByYear W20176613122020 @default.
- W2017661312 countsByYear W20176613122021 @default.
- W2017661312 countsByYear W20176613122022 @default.
- W2017661312 countsByYear W20176613122023 @default.
- W2017661312 crossrefType "journal-article" @default.
- W2017661312 hasAuthorship W2017661312A5011014550 @default.
- W2017661312 hasAuthorship W2017661312A5084557725 @default.
- W2017661312 hasAuthorship W2017661312A5086122397 @default.
- W2017661312 hasConcept C10390562 @default.
- W2017661312 hasConcept C104114177 @default.
- W2017661312 hasConcept C105795698 @default.
- W2017661312 hasConcept C11413529 @default.
- W2017661312 hasConcept C127413603 @default.
- W2017661312 hasConcept C137800194 @default.
- W2017661312 hasConcept C150060386 @default.
- W2017661312 hasConcept C154945302 @default.
- W2017661312 hasConcept C161840515 @default.
- W2017661312 hasConcept C178650346 @default.
- W2017661312 hasConcept C203332170 @default.
- W2017661312 hasConcept C205203396 @default.
- W2017661312 hasConcept C205649164 @default.
- W2017661312 hasConcept C33923547 @default.
- W2017661312 hasConcept C41008148 @default.
- W2017661312 hasConcept C50644808 @default.
- W2017661312 hasConcept C58640448 @default.
- W2017661312 hasConcept C66938386 @default.
- W2017661312 hasConcept C81692654 @default.
- W2017661312 hasConceptScore W2017661312C10390562 @default.
- W2017661312 hasConceptScore W2017661312C104114177 @default.
- W2017661312 hasConceptScore W2017661312C105795698 @default.
- W2017661312 hasConceptScore W2017661312C11413529 @default.
- W2017661312 hasConceptScore W2017661312C127413603 @default.
- W2017661312 hasConceptScore W2017661312C137800194 @default.
- W2017661312 hasConceptScore W2017661312C150060386 @default.
- W2017661312 hasConceptScore W2017661312C154945302 @default.
- W2017661312 hasConceptScore W2017661312C161840515 @default.
- W2017661312 hasConceptScore W2017661312C178650346 @default.
- W2017661312 hasConceptScore W2017661312C203332170 @default.
- W2017661312 hasConceptScore W2017661312C205203396 @default.
- W2017661312 hasConceptScore W2017661312C205649164 @default.
- W2017661312 hasConceptScore W2017661312C33923547 @default.
- W2017661312 hasConceptScore W2017661312C41008148 @default.
- W2017661312 hasConceptScore W2017661312C50644808 @default.
- W2017661312 hasConceptScore W2017661312C58640448 @default.
- W2017661312 hasConceptScore W2017661312C66938386 @default.
- W2017661312 hasConceptScore W2017661312C81692654 @default.
- W2017661312 hasIssue "4" @default.
- W2017661312 hasLocation W20176613121 @default.
- W2017661312 hasOpenAccess W2017661312 @default.
- W2017661312 hasPrimaryLocation W20176613121 @default.
- W2017661312 hasRelatedWork W1987818774 @default.
- W2017661312 hasRelatedWork W2082500643 @default.
- W2017661312 hasRelatedWork W2358349144 @default.
- W2017661312 hasRelatedWork W2359049113 @default.
- W2017661312 hasRelatedWork W2364173106 @default.
- W2017661312 hasRelatedWork W2384719097 @default.
- W2017661312 hasRelatedWork W2612875693 @default.
- W2017661312 hasRelatedWork W2994866120 @default.
- W2017661312 hasRelatedWork W3043322112 @default.
- W2017661312 hasRelatedWork W3208192352 @default.
- W2017661312 hasVolume "15" @default.
- W2017661312 isParatext "false" @default.