Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017661617> ?p ?o ?g. }
- W2017661617 endingPage "1289" @default.
- W2017661617 startingPage "1275" @default.
- W2017661617 abstract "A methodology for the choice of optimal spatial sampling designs is proposed. The problem is to find an optimal finite set of space locations where a random field has to be sampled, in order to minimize the variability of the parametric variogram estimator. Under the hypothesis that the random field is Gaussian second‐order stationary and using a first‐order approximation for the linearization of the parametric variogram with respect to its parameters, we are able to express the covariance matrix of the parameter estimators as a function of the sampling design. An optimization algorithm based on a generalized least squares approach is proposed in order to reduce the variability of these estimators through the minimization of the determinant of their covariance matrix. In order to validate this approach, a practical case study is conducted for two different variogram models. It shows that compared to random sampling designs, the benefit of the optimization procedure is somewhat limited for a variogram model without nugget effect. For a variogram model with nugget effect, random sampling designs are associated with much higher variability on the parameter estimators than optimized designs because of the typical lack of information offered by random sampling designs for small distances between locations. The performance of random sampling designs compared to optimized or alternative regular designs is shown to be poor with respect to parameter estimation, especially when a nugget effect is included in the variogram model. The parameters that benefit the most from the optimization procedure are the variance and the nugget effect, whereas the improvement for the range parameter estimation is limited. The optimization algorithm provides yardstick results, yielding reference values for the selection of an alternative regular design. The applicability of the algorithm is very wide, and it can greatly help the user to understand the way the parameters are influenced by the choice of a set of sampling locations instead of another." @default.
- W2017661617 created "2016-06-24" @default.
- W2017661617 creator A5076408429 @default.
- W2017661617 creator A5080558989 @default.
- W2017661617 date "1999-04-01" @default.
- W2017661617 modified "2023-10-14" @default.
- W2017661617 title "Optimal spatial sampling design for the estimation of the variogram based on a least squares approach" @default.
- W2017661617 cites W1967757070 @default.
- W2017661617 cites W1968703561 @default.
- W2017661617 cites W1979272055 @default.
- W2017661617 cites W1988520084 @default.
- W2017661617 cites W2015754129 @default.
- W2017661617 cites W2016208379 @default.
- W2017661617 cites W2022952383 @default.
- W2017661617 cites W2023311149 @default.
- W2017661617 cites W2024060531 @default.
- W2017661617 cites W2031172850 @default.
- W2017661617 cites W2031768236 @default.
- W2017661617 cites W2036664398 @default.
- W2017661617 cites W2040329444 @default.
- W2017661617 cites W2040496597 @default.
- W2017661617 cites W2042209165 @default.
- W2017661617 cites W2045097183 @default.
- W2017661617 cites W2045999913 @default.
- W2017661617 cites W2053353082 @default.
- W2017661617 cites W2059312110 @default.
- W2017661617 cites W2060670786 @default.
- W2017661617 cites W2066589860 @default.
- W2017661617 cites W2067000587 @default.
- W2017661617 cites W2067853812 @default.
- W2017661617 cites W2075300252 @default.
- W2017661617 cites W2077330627 @default.
- W2017661617 cites W2099204361 @default.
- W2017661617 cites W2112345210 @default.
- W2017661617 cites W2113968288 @default.
- W2017661617 cites W2116634176 @default.
- W2017661617 cites W2153951192 @default.
- W2017661617 cites W2168692957 @default.
- W2017661617 cites W2171074980 @default.
- W2017661617 cites W2433599158 @default.
- W2017661617 cites W2496675188 @default.
- W2017661617 cites W4239357360 @default.
- W2017661617 cites W4241918848 @default.
- W2017661617 cites W4297942844 @default.
- W2017661617 cites W4362219304 @default.
- W2017661617 doi "https://doi.org/10.1029/1998wr900078" @default.
- W2017661617 hasPublicationYear "1999" @default.
- W2017661617 type Work @default.
- W2017661617 sameAs 2017661617 @default.
- W2017661617 citedByCount "79" @default.
- W2017661617 countsByYear W20176616172012 @default.
- W2017661617 countsByYear W20176616172013 @default.
- W2017661617 countsByYear W20176616172014 @default.
- W2017661617 countsByYear W20176616172015 @default.
- W2017661617 countsByYear W20176616172016 @default.
- W2017661617 countsByYear W20176616172017 @default.
- W2017661617 countsByYear W20176616172018 @default.
- W2017661617 countsByYear W20176616172019 @default.
- W2017661617 countsByYear W20176616172020 @default.
- W2017661617 countsByYear W20176616172022 @default.
- W2017661617 crossrefType "journal-article" @default.
- W2017661617 hasAuthorship W2017661617A5076408429 @default.
- W2017661617 hasAuthorship W2017661617A5080558989 @default.
- W2017661617 hasConcept C105795698 @default.
- W2017661617 hasConcept C106131492 @default.
- W2017661617 hasConcept C11413529 @default.
- W2017661617 hasConcept C117251300 @default.
- W2017661617 hasConcept C121332964 @default.
- W2017661617 hasConcept C125572338 @default.
- W2017661617 hasConcept C126255220 @default.
- W2017661617 hasConcept C130402806 @default.
- W2017661617 hasConcept C140779682 @default.
- W2017661617 hasConcept C144024400 @default.
- W2017661617 hasConcept C149923435 @default.
- W2017661617 hasConcept C154881674 @default.
- W2017661617 hasConcept C163716315 @default.
- W2017661617 hasConcept C178650346 @default.
- W2017661617 hasConcept C185142706 @default.
- W2017661617 hasConcept C185429906 @default.
- W2017661617 hasConcept C2908647359 @default.
- W2017661617 hasConcept C31972630 @default.
- W2017661617 hasConcept C33923547 @default.
- W2017661617 hasConcept C41008148 @default.
- W2017661617 hasConcept C62520636 @default.
- W2017661617 hasConcept C75373757 @default.
- W2017661617 hasConcept C81692654 @default.
- W2017661617 hasConcept C94747663 @default.
- W2017661617 hasConceptScore W2017661617C105795698 @default.
- W2017661617 hasConceptScore W2017661617C106131492 @default.
- W2017661617 hasConceptScore W2017661617C11413529 @default.
- W2017661617 hasConceptScore W2017661617C117251300 @default.
- W2017661617 hasConceptScore W2017661617C121332964 @default.
- W2017661617 hasConceptScore W2017661617C125572338 @default.
- W2017661617 hasConceptScore W2017661617C126255220 @default.
- W2017661617 hasConceptScore W2017661617C130402806 @default.
- W2017661617 hasConceptScore W2017661617C140779682 @default.
- W2017661617 hasConceptScore W2017661617C144024400 @default.
- W2017661617 hasConceptScore W2017661617C149923435 @default.