Matches in SemOpenAlex for { <https://semopenalex.org/work/W2017663387> ?p ?o ?g. }
- W2017663387 endingPage "86" @default.
- W2017663387 startingPage "77" @default.
- W2017663387 abstract "Craniofacial superimposition can provide evidence to support that some human skeletal remains belong or not to a missing person. It involves the process of overlaying a skull with a number of ante mortem images of an individual and the analysis of their morphological correspondence. Within the craniofacial superimposition process, the skull–face overlay stage just focuses on achieving the best possible overlay of the skull and a single ante mortem image of the suspect. Although craniofacial superimposition has been in use for over a century, skull–face overlay is still applied by means of a trial-and-error approach without an automatic method. Practitioners finish the process once they consider that a good enough overlay has been attained. Hence, skull–face overlay is a very challenging, subjective, error prone, and time consuming part of the whole process. Though the numerical assessment of the method quality has not been achieved yet, computer vision and soft computing arise as powerful tools to automate it, dramatically reducing the time taken by the expert and obtaining an unbiased overlay result. In this manuscript, we justify and analyze the use of these techniques to properly model the skull–face overlay problem. We also present the automatic technical procedure we have developed using these computational methods and show the four overlays obtained in two craniofacial superimposition cases. This automatic procedure can be thus considered as a tool to aid forensic anthropologists to develop the skull–face overlay, automating and avoiding subjectivity of the most tedious task within craniofacial superimposition." @default.
- W2017663387 created "2016-06-24" @default.
- W2017663387 creator A5003654697 @default.
- W2017663387 creator A5011959346 @default.
- W2017663387 creator A5013455537 @default.
- W2017663387 creator A5043084209 @default.
- W2017663387 creator A5069814932 @default.
- W2017663387 creator A5084342487 @default.
- W2017663387 date "2014-12-01" @default.
- W2017663387 modified "2023-09-27" @default.
- W2017663387 title "Computer vision and soft computing for automatic skull–face overlay in craniofacial superimposition" @default.
- W2017663387 cites W1038488014 @default.
- W2017663387 cites W1044210311 @default.
- W2017663387 cites W1512383952 @default.
- W2017663387 cites W1968193040 @default.
- W2017663387 cites W1974963777 @default.
- W2017663387 cites W1975491593 @default.
- W2017663387 cites W1983437834 @default.
- W2017663387 cites W1983613037 @default.
- W2017663387 cites W1993645209 @default.
- W2017663387 cites W1995365592 @default.
- W2017663387 cites W2003525759 @default.
- W2017663387 cites W2004154801 @default.
- W2017663387 cites W2006234729 @default.
- W2017663387 cites W2017840187 @default.
- W2017663387 cites W2024960538 @default.
- W2017663387 cites W2045124019 @default.
- W2017663387 cites W2062177611 @default.
- W2017663387 cites W2067477825 @default.
- W2017663387 cites W2091625990 @default.
- W2017663387 cites W2093271157 @default.
- W2017663387 cites W2130771087 @default.
- W2017663387 cites W2141539174 @default.
- W2017663387 cites W2147555557 @default.
- W2017663387 cites W21502159 @default.
- W2017663387 cites W2156509682 @default.
- W2017663387 cites W2164243902 @default.
- W2017663387 cites W2165920727 @default.
- W2017663387 cites W2461583230 @default.
- W2017663387 cites W4211007335 @default.
- W2017663387 cites W4230987846 @default.
- W2017663387 cites W4234799009 @default.
- W2017663387 cites W4300480285 @default.
- W2017663387 doi "https://doi.org/10.1016/j.forsciint.2014.10.009" @default.
- W2017663387 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25447179" @default.
- W2017663387 hasPublicationYear "2014" @default.
- W2017663387 type Work @default.
- W2017663387 sameAs 2017663387 @default.
- W2017663387 citedByCount "25" @default.
- W2017663387 countsByYear W20176633872015 @default.
- W2017663387 countsByYear W20176633872016 @default.
- W2017663387 countsByYear W20176633872017 @default.
- W2017663387 countsByYear W20176633872018 @default.
- W2017663387 countsByYear W20176633872019 @default.
- W2017663387 countsByYear W20176633872020 @default.
- W2017663387 countsByYear W20176633872021 @default.
- W2017663387 countsByYear W20176633872022 @default.
- W2017663387 countsByYear W20176633872023 @default.
- W2017663387 crossrefType "journal-article" @default.
- W2017663387 hasAuthorship W2017663387A5003654697 @default.
- W2017663387 hasAuthorship W2017663387A5011959346 @default.
- W2017663387 hasAuthorship W2017663387A5013455537 @default.
- W2017663387 hasAuthorship W2017663387A5043084209 @default.
- W2017663387 hasAuthorship W2017663387A5069814932 @default.
- W2017663387 hasAuthorship W2017663387A5084342487 @default.
- W2017663387 hasConcept C111919701 @default.
- W2017663387 hasConcept C118552586 @default.
- W2017663387 hasConcept C127313418 @default.
- W2017663387 hasConcept C136085584 @default.
- W2017663387 hasConcept C143874112 @default.
- W2017663387 hasConcept C144024400 @default.
- W2017663387 hasConcept C151730666 @default.
- W2017663387 hasConcept C154945302 @default.
- W2017663387 hasConcept C15744967 @default.
- W2017663387 hasConcept C199360897 @default.
- W2017663387 hasConcept C2779300802 @default.
- W2017663387 hasConcept C2779304628 @default.
- W2017663387 hasConcept C2781245598 @default.
- W2017663387 hasConcept C31972630 @default.
- W2017663387 hasConcept C36289849 @default.
- W2017663387 hasConcept C41008148 @default.
- W2017663387 hasConcept C98045186 @default.
- W2017663387 hasConceptScore W2017663387C111919701 @default.
- W2017663387 hasConceptScore W2017663387C118552586 @default.
- W2017663387 hasConceptScore W2017663387C127313418 @default.
- W2017663387 hasConceptScore W2017663387C136085584 @default.
- W2017663387 hasConceptScore W2017663387C143874112 @default.
- W2017663387 hasConceptScore W2017663387C144024400 @default.
- W2017663387 hasConceptScore W2017663387C151730666 @default.
- W2017663387 hasConceptScore W2017663387C154945302 @default.
- W2017663387 hasConceptScore W2017663387C15744967 @default.
- W2017663387 hasConceptScore W2017663387C199360897 @default.
- W2017663387 hasConceptScore W2017663387C2779300802 @default.
- W2017663387 hasConceptScore W2017663387C2779304628 @default.
- W2017663387 hasConceptScore W2017663387C2781245598 @default.
- W2017663387 hasConceptScore W2017663387C31972630 @default.
- W2017663387 hasConceptScore W2017663387C36289849 @default.
- W2017663387 hasConceptScore W2017663387C41008148 @default.